
A Keyword-based Query Processing

Method for Datasets with Schemas

Grettel Monteagudo García

Tese (Doutorado em Informática). Pontifícia Universidade Católica do Rio

de Janeiro. Rio de Janeiro, 2020.

Grettel Monteagudo García

 A Keyword-based Query Processing Method

for Datasets with Schemas

TESE DE DOUTORADO

Thesis presented to the Programa de Pós-Graduação em Informática of

PUC-Rio in partial fulfillment of the requirements for the degree of

Doutor em Ciências - Informática

Advisor: Prof. Marco Antonio Casanova

Rio de Janeiro

March 2020

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

Grettel Monteagudo García

 A Keyword-based Query Processing

Method for Datasets with Schemas

Thesis presented to the Programa de Pós-Graduação em
informatica of PUCRio in partial fulfillment of the
requirements for the degree of Doutor em Informatica.
Approved by the Examination Committee.

Prof. Marco Antonio Casanova
Advisor

Departamento de Informática – PUC-Rio

Prof. Antonio Luz Furtado
Departamento de Informática – PUC-Rio

Profa. Melissa Lemos
Departamento de Informática – PUC-Rio

 Prof. Luiz André Portes Paes Leme
UFF

Prof. Geraldo Bonorino Xexéo
UFRJ

 Rio de Janeiro, March 13th, 2020

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

All rights reserved.

 Grettel Monteagudo García

Grettel Monteagudo García holds a Master Degree in Computer Science

from the Pontifical Catholic University of Rio de Janeiro (PUC-Rio)

since 2016, and a Bachelor Degree in Computer Science from the

University of Havana (UH), since 2012. Her main research topics are

Semantic Web and Information Retrieval.

Bibliographic data

Monteagudo García, Grettel

 A Keyword-based Query Processing Method for Datasets with

Schemas / Grettel Monteagudo García; advisor: Marco Antonio

Casanova. – 2020.

 102 f. : il. ; 30 cm

 Tese (Doutorado em Informática)–Pontifícia Universidade Católica

do Rio de Janeiro, Rio de Janeiro, 2020.

 Inclui bibliografia

 1. Informática – Teses. 2. Árvores de Steiner. 3. Busca por palavras-

chave. 4. RDF. 5. SPARQL. 6. SQL. I. Casanova, Marco Antonio. II.

Pontifícia Universidade Católica do Rio de Janeiro. Departamento de

Informática. III. Título.

CDD: 004

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

Acknowledgments

I would like to thank to all my family, a special thank you to my parents, Sonia and

Camilo, for their support and encouragement during all these years of study and to

my little sisters, all I do is with the hope to be an example to them.

The most special thank you to my husband Alejandro, my loyal companion

in this adventure so far from my country.

I would like to thank my advisor Marco Antonio Casanova, the best advisor

I could ever ask for. I admire him for their professionalism and unconditional

support to his students. For sure, his fully support and wisdom were key

contributors in my academic achievements.

I can’t forget to thank the team from Tecgraf/K2, which were a key part in

the years of this project. Best regards Elisa, Fred, Kaka, Bruno and Melissa.

Of course, I would like to extend my appreciation and gratitude to classmates,

professors and staff from the Department of Informatics. Thanks to all for your help

and for always being so accommodating.

Last, but not least important, my deep gratitude to the Cuban troops in Rio de

Janeiro, specially to my old friend and research partner Yenier and to my

Cuban/Brazilian godchild Liam and his parents for that gift.

This study was financed in part by the Conselho Nacional de

Desenvolvimento Científico e Tecnológico (CNPq), and by the Fundação Carlos

Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ).

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

Abstract

Monteagudo García, Grettel; Casanova, Marco Antonio (advisor). A

Keyword-based Query Processing Method for Datasets with Schemas.

Rio de Janeiro, 2020. 102p. Tese de Doutorado - Departamento de

Informática, Pontifícia Universidade Católica do Rio de Janeiro.

Users currently expect to query data in a Google-like style, by simply typing some

terms, called keywords, and leaving it to the system to retrieve the data that best

match the set of keywords. The scenario is quite different in database management

systems, where users need to know sophisticated query languages to retrieve data,

and in database applications, where the user interfaces are designed as a stack of

pages with numerous “boxes” that the user must fill with his search parameters.

This thesis describes an algorithm and a framework designed to support keyword-

based queries for datasets with schema, specifically RDF datasets and relational

databases. The algorithm first translates a keyword-based query into an abstract

query, and then compiles the abstract query into a SPARQL or a SQL query such

that each result of the SPARQL (resp. SQL) query is an answer for the keyword-

based query. It explores the schema to avoid user intervention during the translation

process and offers a feedback mechanism to generate new answers. The thesis

concludes with experiments over the Mondial, IMDb, and Musicbrainz databases.

The proposed translation algorithm achieves satisfactory results and good

performance for the benchmarks. The experiments also compare the RDF and the

relational alternatives.

Keywords

Steiner Tree; Keyword Search; RDF; SPARQL; SQL.

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

Resumo

Monteagudo García, Grettel; Casanova, Marco Antonio (orientador). Método

para o Processamento de Consultas por Palavras-Chaves para Bases de

Dados com Esquemas. Rio de Janeiro, 2020. 102p. Tese de Doutorado -

Departamento de Informática, Pontifícia Universidade Católica do Rio de

Janeiro.

Usuários atualmente esperam consultar dados de maneira semelhante ao Google,

digitando alguns termos, chamados palavras-chave, e deixando para o sistema

recuperar os dados que melhor correspondem ao conjunto de palavras-chave. O

cenário é bem diferente em sistemas de gerenciamento de banco de dados em que

os usuários precisam conhecer linguagens de consulta sofisticadas para recuperar

dados, ou em aplicações de banco de dados em que as interfaces de usuário são

projetadas como inúmeras "caixas" que o usuário deve preencher com seus

parâmetros de pesquisa. Esta tese descreve um algoritmo e um framework

projetados para processar consultas baseadas em palavras-chave para bases de

dados com esquema, especificamente bancos relacionais e bases de dados em RDF.

O algoritmo primeiro converte uma consulta baseada em palavras-chave em uma

consulta abstrata e, em seguida, compila a consulta abstrata em uma consulta

SPARQL ou SQL, de modo que cada resultado da consulta SPARQL (resp. SQL)

seja uma resposta para a consulta baseada em palavras-chave. O algoritmo explora

o esquema para evitar a intervenção do usuário durante o processo de busca e

oferece um mecanismo de feedback para gerar novas respostas. A tese termina com

experimentos nas bases de dados Mondial, IMDb e Musicbrainz. O algoritmo

proposto obtém resultados satisfatórios para os benchmarks. Como parte dos

experimentos, a tese também compara os resultados e o desempenho obtidos com

bases de dados em RDF e bancos de dados relacionais.

Palavras-chave

Árvores de Steiner; Busca por palavras-chave; RDF; SPARQL; SQL.

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

Table of Contents

1 Introduction 12

1.1 Context and Motivation 12

1.2 Goal and Contributions 14

1.3 Structure of the Thesis 15

2 Background and Related Work 16

2.1 Graph Concepts 16

2.2 Information Retrieval 18

2.2.1. Definition 18

2.2.2. The matching process 19

2.2.3. Disambiguation Problem 20

2.2.4. Evaluation 20

2.3 Related Work 21

2.3.1. Schema-based Tools for Keyword Search 21

2.3.2. Graph-based and Pattern-based Tools for Keyword Search 22

2.3.3. Improved Tools for Keyword Search 23

2.3.4. The Proposed Tool 24

3 The Keyword Search Problem 25

3.1 Advanced Keyword Query 25

3.2 Answers for an Advanced Keyword Query 25

3.2.1. RDF Environment 25

3.2.2. Relational Environment 26

3.3 User Intentions 28

3.3.1. Assumptions 28

3.3.2. Minimal Answer 29

3.3.3. Matches Filtering 30

3.4 Chapter Conclusion 31

4 The Keyword Search Algorithm 32

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

4.1 General definitions 32

4.1.1. Graph Database Schema 32

4.1.2. Boolean Functions and Buckets 35

4.1.3. Nucleus and Abstract Query 36

4.2 Translation Algorithm 36

4.2.1. Shortest Path Index 38

4.2.2. Building Buckets 40

4.2.3. Build Nucleuses 44

4.2.4. Select Nucleuses 45

4.2.5. Connect Entities 49

4.2.6. Translation Algorithm 55

4.3 User Feedback 57

4.3.1. Computing Alternatives to Interrelate the Resources 57

4.3.2. Computing Alternative Resources 58

4.4 Chapter Conclusion 58

5 Implementation 60

5.1 User Query Parser 60

5.2 Architecture 62

5.3 Auxiliary Tables 63

5.3.1. Populating the Auxiliary Tables in the Relational Environment 64

5.3.2. Populating the Auxiliary Tables in the RDF Environment 66

5.4 Map Schema 68

5.5 Matches and Score 69

5.5.1. Find Matches 69

5.5.2. Compute Score 71

5.6 Compiling Abstract Query 73

5.6.1. Relational Environment 73

5.6.2. Example for the Relational Environment 74

5.6.3. RDF Environment 75

5.6.4. Example for the RDF Environment 76

5.7 User Interface 78

5.8 Chapter Conclusion 82

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

6 Evaluation 83

6.1 Setup 83

6.2 Coffman’s benchmark 84

6.2.1. Experiments with Mondial 84

6.2.2. Experiments with IMDb 87

6.2.3. Experiments with MusicBrainz 90

6.3 Chapter Conclusion 92

7 Conclusions and Future Work 94

7.1 Conclusions 94

7.2 Future Work 95

8 Bibliography 97

9 Annex 100

9.1 Tokenize query grammar 100

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

List of Figures

Figure 1 MST Example 16

Figure 2 Example of all shortest-path distance table 17

Figure 3 Minimum Steiner Tree for the nodes set {A,D} 18

Figure 4 Classical Information Retrieval Process 19

Figure 5 Information Retrieval Process for Databases 19

Figure 6. RDF Dataset. 34

Figure 7. Relational Database. 35

Figure 8 Algorithm Overview 37

Figure 9. Example of two shortest path between the nodes B and D. 38

Figure 10 Graph Example 40

Figure 11. Example of the heuristic to find a minimum Steiner tree. 50

Figure 12. Example of a wrong result of the heuristic. 51

Figure 13. Example of multiple minimal Steiner Trees. 51

Figure 14. Example of multiple spanning trees and shortest paths. 52

Figure 15. DANKE Component Diagram. 62

Figure 16. DANKE Architecture. 63

Figure 17. RDF Data. 67

Figure 18. Example of auto-completion. 78

Figure 19. Example of tabular answer. 79

Figure 20. Example of query graph. 79

Figure 21. Property selection. 80

Figure 22. Example of instance information. 80

Figure 23. Example of instance relations. 81

Figure 24. Example of navigation. 81

Figure 25. Example of feedback with other resources. 81

Figure 26. Example of feedback with multiple Steiner trees. 82

Figure 27 Mondial - Build Time and Total Elapsed Time 87

Figure 28 IMDb - Build Time and Total Elapsed Time 90

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

List of Tables

Table 1 Mapping of Schema Concepts 33

Table 2. Example of δ. 40

Table 3. Example of π. 40

Table 4. Examples of parsing text to Boolean functions. 60

Table 5. Examples of parsing text into a KwQ+ query. 61

Table 6. Country Table Data. 65

Table 7. City Table Data. 65

Table 8. Example of the ENTITIES Table for the Relational Environment. 65

Table 9. Example of the PROPERTIES Table for the Relational Environment. 65

Table 10. Example of the JOINS Table for the Relational Environment. 65

Table 11 Example of the VALUES Table for the Relational Environment 65

Table 12. Example of the ENTITIES Table for the RDF Environment. 67

Table 13 Example of the PROPERTIES Table for the RDF Environment. 67

Table 14. Example of the JOINS Table for the RDF Environment. 67

Table 15. Example of the VALUES Table for the RDF Environment. 67

Table 16. Statistics – Mondial and IMDb. 83

Table 17 Time taken by the pre-processing tasks 84

Table 18 Mondial Results 86

Table 19 Data Match Scores 88

Table 20 IMDb Results 89

Table 21 Music Brainz Results 91

Table 22 Summary of the experiments 93

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

1
Introduction

1.1 Context and Motivation

Users currently expect to query data in a Google-like style, by simply typing some

terms, called keywords, and leaving it to the system to retrieve the data that best

match the set of keywords. These systems usually offer an advanced search

interface, which the user may take advantage to specify Boolean functions

involving the keywords or to limit the search. We call advanced keyword queries

(KwQ+) keyword-based queries that allow specifying Boolean functions involving

the keywords.

Keyword search mechanisms were mostly used by search engines for Web

pages, but the use of keyword search was extended to retrieve images, videos,

publications, and others. The success of such systems may, therefore, be credited to

(1) a very simple user interface; (2) an efficient retrieval mechanism; and (3) a

ranking algorithm that meets user expectations, that is, the user will find the most

interesting items at the top of the result list.

In database management systems and database applications, the scenario is

quite different. Usually, to retrieve data, users need to know sophisticated query

languages and how the data is structured. Database applications create user

interfaces that hide the complexity of the query language. These interfaces are often

designed as a stack of pages with numerous “boxes” that the user must fill with his

search parameters. Hitting the middle ground, we find database applications that

offer keyword-based query interfaces (in short KwS database applications). KwS

database applications should reach a performance similar to that of the Information

Retrieval applications for the Web, although the underlying data is stored in a

conventional database. Furthermore, they should free the user from filling “boxes”

with exact data by compiling keyword-based queries into meaningful queries, from

the user point of view, written in the supported language.

Unquestionably, relational databases are widely used, but with the

emergence of the concepts of Linked Data, the use of RDF datasets became an

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 13

interesting alternative. The adoption of RDF as the underlying data model has some

attractive advantages, the most obvious is the flexibility RDF offers by modeling

data as RDF triples of the form (s,p,o), which asserts that resource s has property p

with value o. A collection of RDF triples intrinsically represents a labeled, directed

multi-graph. Conceptually a relational database can also be viewed as a graph,

where tuples in different tables are treated as nodes connected via foreign key

relationships. Both relational databases and RDF datasets can therefore be viewed

as a graph.

In Web Information Retrieval, there are two main tasks: (1) matching

keywords with indexed documents; (2) ranking the retrieved documents by order

of relevance. KwS database applications present a further challenge, compared to

the Web, since the data that a user needs may not be in one single place, but rather

it is distributed over the database. An answer for a keyword-based query over a

graph database is a substructure of the graph containing all keywords.

Summarizing, the three main tasks in KwS database applications over graph

databases are: (1) finding pieces of information in the database; (2) assembling the

retrieved pieces of information to compose answers; (3) ranking the answers.

KwS database applications over relational databases have been studied for

quite some time (Aditya, 2002; Agrawal et al., 2002; Hristidis & Papakonstantinou,

2002). Considering that RDF datasets are interesting sources of knowledge that are

also queried with non-friendly SPARQL queries, KwS database applications over

RDF datasets became a relevant research topic (Gkirtzou et al., 2015; Han et al.,

2017; Zhou et al., 2007). In what follows, we refer to these alternatives as the

relational environment and the RDF environment, when the underlying data are

respectively stored in a relational database using the SQL query language or in an

RDF dataset using the SPARQL query language.

The main motivation of this work is how to construct a KwS database

application for graph databases with schema. We focus on the problem for both the

relational environment and the RDF environment.

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 14

1.2 Goal and Contributions

The problem addressed in this work is how to find answers for KwQ+ over graph

databases under the assumption that the dataset or database has a schema. The

solution described a method to uniformly solves both versions of the problem (RDF

datasets or relational databases).

To create this tool, we identified two points in a KwS database application

that are environment-dependent:

1. How the database schema is defined, and

2. The query language of the database.

Based on this observation, we designed DANKE as a flexible tool, which

easily extended for new environments. The translation algorithm has three

functionalities that should be implemented for each environment that we want to

extend. The functionalities are:

1. Mapping the database schema into an abstract schema;

2. Finding in the database the elements that cover the keywords;

3. Mapping an abstract query into a query in the environment query

language.

The abstract schema and the abstract query are respectively general

representations of a schema and a query for graph databases with schema, and do

not depend on the environment.

The first and key contribution of this thesis is an algorithm that translates

KwQ+ into a query in the environment query language. The algorithm can be easily

extended for different environments. It explores the schema to dispense with user

intervention during the translation process and to minimize the number of joins in

a query. The problem of minimizing the number of joins to assemble the query is

equivalent to the problem of finding a minimum Steiner Tree, an NP-Complete

problem, and this is why we use approximate solutions.

The second contribution is the framework that allows extending the search

algorithm for new environments. The framework is fully implemented as a tool

called DANKE (Data and Knowledge Retrieval). The implementation is engineered

to work with different RDF stores and relational DBMSs. The current

implementation supports ORACLE 12c and JENA TDB, for the RDF environment,

and ORACLE 12c and POSTGRES, for the relational environment. We also discuss

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 15

the tasks required to prepare the database to make the search process faster. The

tasks are executed only once and depend on the environment.

Finally, the third contribution of this thesis is an extensive set of experiments

to assess the correctness and the performance of the algorithm over the RDF and

the relational environment. The experiments use RDF and relational versions of

IMDb, which includes descriptions of artists, movies, documentaries, TV series,

and even computer games, and the Mondial database, compiled from geographical

Web data sources. For the experiments, we also use a relational version of the

MusicBrainz database, compiled from music metadata.

1.3 Structure of the Thesis

The remainder of this thesis is structured as follows. Chapter 2 introduces

background concepts. It also discusses related work for KwS database applications

in both environments. Chapter 3 presents the keyword search problem. Chapter 4

features the translation algorithm. Chapter 5 specifies the architecture and the

implementation of the framework for each environment. Chapter 6 covers

experiments to assess the algorithm. Finally, Chapter 7 contains the conclusions

and indicates directions for future work.

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

2
Background and Related Work

This chapter provides an overview of the main concepts related to this thesis.

Section 2.1 covers graph concepts. Section 2.2 defines the main tasks of an

information retrieval system. Finally, Section 2.3 presents related work.

2.1 Graph Concepts

Let G=(V,E) be a weighted graph, where V and E denote the set of nodes and edges

respectively and, for each edge (u,v)E, w(u,v) denotes the specific cost to connect

u and v.

The minimum spanning tree problem (MST problem) refers to the problem

of finding an acyclic subset TE that connects all of the nodes of G and whose total

weight is minimum. There exist two well-known algorithms to solve the MST

problem: Kruskal’s algorithm and Prim’s algorithm. Generally, each of them runs

in time O(|E|.log(|V|)) using ordinary binary heaps. By using Fibonacci heaps,

Prim’s algorithm runs in time O(|E|+|V|.log(|V|)), which improves the binary-heap

implementation, if |V| is much smaller than |E| (Cormen et al., 2009). Figure 1

contains an example of an MST of a graph.

Figure 1 MST Example

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 17

The shortest path problem refers to the problem of finding a path

p=(v0,v1,…,vk) between two given nodes, v0 and vk, such that the sum of the weights

of the edges in p is minimum.

The all-pairs shortest-paths problem refers to the problem of finding the

shortest path for every pair of nodes. Usually, to solve this problem, the shortest

path from one node to all the others is computed |V| times, using Dijkstra’s

algorithm. Alternatively, Floyd-Warshall’s algorithm, which has complexity

O(|V|3), or Johnson’s algorithm may be used. For dense graphs, Floyd-Warshall’s

algorithm is a better option than running Dijkstra’s algorithm |V| times (Cormen et

al., 2009). Figure 2 contains an example of an all shortest-path distance table.

Figure 2 Example of all shortest-path distance table

The minimum Steiner tree problem (MST problem) refers to the problem of

finding a minimum weight tree in G that spans a set of nodes X, with XV. This

problem is known to be NP-complete. In fact, it is one of the Karp's 21 NP-complete

problems (Chopra & Rao, 1994).

The Steiner tree problem can be seen as a generalization of two other famous

combinatorial optimization problems: the (non-negative) shortest path problem and

the minimum spanning tree problem. If a Steiner tree problem contains exactly two

terminals, it reduces to finding the shortest path. If, on the other hand, X=V, the

Steiner tree problem is equivalent to the minimum spanning tree. However, while

both the non-negative shortest path and the minimum spanning tree problem are

solvable in polynomial time, the Steiner tree problem is NP-complete. Figure 3

contains an example of the minimum Steiner tree of a graph.

https://en.wikipedia.org/wiki/Karp%27s_21_NP-complete_problems
https://en.wikipedia.org/wiki/Karp%27s_21_NP-complete_problems
https://en.wikipedia.org/wiki/Shortest_path_problem
https://en.wikipedia.org/wiki/Minimum_spanning_tree
https://en.wikipedia.org/wiki/NP-complete
DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 18

Figure 3 Minimum Steiner Tree for the nodes set {A,D}

2.2 Information Retrieval

2.2.1. Definition

An information retrieval (IR) system is a software program that manages data and

helps users find the information they need. There are three basic processes an IR

system has to support: the representation of the content, the representation of the

user information needs, and the comparison of the two representations (Hiemstra,

2009).

In a classical IR system, the content is a database of documents, and the user

needs are expressed through a keyword-based query. The document representation

process is usually called the indexing process, and it takes place offline. The

representation process of the user information needs is often referred as the query

formulation process. In a broad sense, query formulation might denote the complete

interactive dialogue between the system and the user, leading not only to a suitable

query but, possibly, also to the user better understanding his information needs. The

comparison of the query against the document representations is called the

matching process. This process usually results in a ranked list of documents. The

documents that satisfy the user information needs are called relevant documents,

and in the IR system result will hopefully put the relevant documents at the top of

the ranked list, minimizing the time the user has to invest in reading the documents.

Figure 4 details the complete process.

A perfect retrieval system would retrieve only relevant documents (that is, it

would have 100% precision) and would retrieve all such documents (that is, it

would have 100% recall). However, perfect retrieval systems do not exist since

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 19

search statements are incomplete, and relevance depends on the subjective opinion

of users.

Figure 4 Classical Information Retrieval Process

An IR system, where the content is a database, may be seen as an extension

of a classical system, where the database values are “documents”. However,

additionally, the system needs to connect the relevant documents to relate the

information and compose answers.

 The database representation is also called the indexing process; the values

and connections may be indexed. The comparison of the query against the database

representations wraps the matching process and the connecting process. These

processes result in a ranked list of answers. Figure 5 outlines de whole process.

Figure 5 Information Retrieval Process for Databases

2.2.2. The matching process

As defined before, the comparison of the query against the document

representations is called the matching process.

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 20

There are several types of matches:

1. Fuzzy match: the search query is similar to a substring of the content

(find matches even when users mispell words or enter only partial

words for the search).

2. Contain match: This is a type of fuzzy match, when the search query

is a substring of the content.

3. Exact match: This is a type of contain match, when the search query

is equal to the content.

In general, the type of the match affects the order of the ranked list of answers.

2.2.3. Disambiguation Problem

Ambiguity in natural language has long been recognized as having a detrimental

effect on the performance of text-based information retrieval (IR) systems.

Sometimes called the polysemy problem, the problem that a word may have more

than one meaning is entirely discounted in most traditional IR strategies (Stokoe et

al., 2003). If ambiguous words can be correctly disambiguated, IR performance will

increase.

2.2.4. Evaluation

This section recalls the definitions of precision and average precision for a ranked

list of answers, which we will use to compare and evaluate an IR system.

Let S be a list of answers, considered as the golden standard. An answer d

is relevant iff dS. Let L be a list of answers.

The precision at position k of L for S is defined as:

𝑃(𝑘) =
| 𝑆 ∩ 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 (𝑘) |

| 𝑟𝑒𝑡𝑟𝑖𝑒𝑣𝑒𝑑 (𝑘) |

where retrieved(k) is the set of all answers in L until position k.

The average precision of L, concerning S, is defined as:

𝐴𝑃𝐿 =
1

|𝑆|
 ∑ 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒(𝑘) ∗ 𝑃(𝑘)

𝑛

𝑘=1

where relevance(k) is an indicator function that returns 1, if the answer at position

k is relevant, and 0, otherwise. Notice that the average precision of the golden

standard S is APS=1, which is the target performance of a centrality measure.

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 21

2.3 Related Work

In this section, we discuss different tools or algorithms that implement keyword

search over relational databases or RDF datasets. We may distinguish a tool as

schema-based, graph-based, or pattern-based. Schema-based tools model the

database to be queried as a graph that represents the conceptual schema. Graph-

based tools operate directly on the data, for relational databases the nodes are tuples

and an edge between two tuples denotes that they are connected by a foreign key

constraint. Pattern-based tools hit the middle ground, in the sense that they mine

patterns from the RDF dataset to be used instead of the conceptual schema. It is also

useful to distinguish between fully automatic tools from tools that resort to user

intervention during the search process. An early survey of keyword search in

databases can be found in (Qin et al., 2009).

2.3.1. Schema-based Tools for Keyword Search

Usually, schema-based applications for relational environments explore the

foreign/primary keys declared in the relational schema to compile a keyword-based

query into an SQL query with a minimal set of join clauses – and this is a key idea

– based on the notion of candidate networks (CNs) (Aditya, 2002; Agrawal et al.,

2002; Bergamaschi et al., 2016; Hristidis & Papakonstantinou, 2002). DBXplorer

(Agrawal et al., 2002) does not consider solutions in which keywords hit different

tuples from the same relation. Furthermore, they only consider exact matches,

where a keyword must match exactly an attribute value. DISCOVER (Hristidis &

Papakonstantinou, 2002) does not consider that the keywords may match the

metadata of the database. QUEST (Bergamaschi et al., 2016) proposes a graph

structure that includes the tables, the attributes and domains of the attribute.

SPARK (Zhou et al., 2007), an RDF environment tool, uses the Wordnet

ontology to discover the relations between the keywords and the dataset. Then, it

generates all possible term mapping subsets and, finally, uses a minimal spanning

tree to create a query graph for each subset. The query graph is an abstract definition

of a semantic query that, using conversion rules, is translated into SPARQL. The

limitations of SPARK are the high numbers of subsets that may be created for

ambiguous datasets, and that it did not take into account that there may be more

than one graph to connect a specific subset of term mappings.

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 22

Other examples of RDF schema-based tools are QUICK (Zenz et al., 2009),

Hermes (Tran et al., 2009) and Gkirtzou et al. (2015). QUICK translates keyword-

based queries to SPARQL queries with the help of the user, who chooses a set of

intermediate queries, which the tool ranks and executes. Algorithms based on user

feedback reduce the number of CNs generates and improve the precision of the

results. In QUICK, the user should be familiar with RDF graphs and should know

the schema of the dataset; also, he may have to select intermediate queries in many

steps. In Hermes, the data graph is preprocessed to obtain a keyword index and a

graph index, which is basically a summary of the original graph containing

structural (schema) elements only. To compute the top-k queries, graph elements

are augmented with scores, associated with structure elements and computed off-

line; but scores of keyword elements are specific to the query. They also enrich

every element label with semantically similar terms extracted from the Wordnet

ontology. Similar to SPARK, Gkirtzou et al. (2015) find all possible subsets of the

matched elements and generate a candidate SPARQL query for each combination

using the notion of shortest path. They include a module to translate SPARQL

queries to natural language, which avoids the user having to understand SPARQL

syntax to decide the query that will be executed. Among these tools, only QUICK

is not fully automatic.

2.3.2. Graph-based and Pattern-based Tools for Keyword Search

The challenge of graph-based tools is to handle the large and complex graphs

induced by the database instance, which may lead to an intractable problem.

Furthermore, different interpretations (with different structures) that arise due to

inherent keyword ambiguities appear all mixed up in the result sets. BANKS

(Aditya, 2002) is an example; the tuple graph is created based on database schema;

then their algorithms work on huge data graphs ,ignoring the important structural

information provided by the database schema. BANKS is not fully automatic - if

multiple nodes match a keyword, the user needs to disambiguate.

The work reported in He et al. (2007) proposed pruning and accelerating the

construction of efficient ranked keyword searches on schema-less node-labeled

graphs, without focusing on a particular environment. Following the standard

approach taken by other systems, they also restrict answers to those connected

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 23

substructures that are minimal and construct an index that is a selectively

precomputation and materialization of some shortest-path information. They also

propose a technique to reduce the index disk space, partitioning the data graph into

blocks.

Most of the graph-based algorithms proposed in the literature work for the

RDF environment (Elbassuoni & Blanco, 2011; Han et al., 2017; Le et al., 2014;

Lin et al., 2018; Rihany et al., 2018; Virgilio, De et al., 2013). Elbassuoni & Blanco

(2011) described a technique for retrieving a set of subgraphs that match the

keywords and for ranking them based on statistical language models. Virgilio, De

et al. (2013) proposed a solution that adopts the algorithm proposed in Virgilio, De

(2012) to discover the connections between nodes implementing an index for RDF

graphs based on the principles of tensor calculus. Le et al. (2014) and Lin et al.

(2018) proposed a type-based summarization approach for the RDF data that prunes

large portions of the graph that are irrelevant to the query. Han et al. (2017)

proposed a two-phase framework to interpret keyword queries. In the first phase,

they address the keyword disambiguation problem; a keyword query generates a set

of annotated queries (entity, class or predicate edges) wherein two annotated

queries do not have overlapping sets of keywords. In the second phase, they

assemble a valid graph with the minimum assembly cost for each annotated query.

Rihany et al. (2018) also explored Wordnet to solve the gap between the keywords

of the query and the terms used in the dataset, and proposed a ranking method based

on the semantic relations which have been used during the matching process.

Zheng et al. (Zheng et al., 2016) adopted a pattern-based approach, and

proposed a systematic method to mine semantically equivalent structure patterns to

summarize the knowledge graph and, thereby, circumvent the lack of an RDF

schema. Yang et al. (2014) proposed to mine tree patterns that will then connect

together the keywords specified by the user; the tree patterns are ordered by

relevance using their size, the PageRank of the nodes, and the quality of keyword

match.

2.3.3. Improved Tools for Keyword Search

The algorithms proposed by Oliveira, De et al. (2015), Zhang et al. (2014), and

Wang et al. (2017) focused on improving the existing tools for keyword search.

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 24

Oliveira, De et al. (2015) discussed the problem of ranking CNs and showed that

processing only the top-4 CNs, and not all CNs, improves not only the time it takes

to return answers, but also the quality of the answers retrieved. Wang et al. (2017)

and Zhang et al. (2014) described algorithms for keyword query rewriting and

concluded that specifying the exact keywords that describe the user intention is

easier to find the adequate results through keyword query.

2.3.4. The Proposed Tool

The tool described in this thesis takes advantage of the ideas proposed in the state-

of-art tools summarized in the previous section to: i) generate queries with a

minimal set of joins; ii) improve the efficiency, by using schema information to

generate few (but good) queries (Oliveira, De et al., 2015) and creating indexes with

schema information (Tran et al., 2009); and iii) handle the keyword disambiguation

problem, by augmenting the elements of the schema with scores (Zenz et al., 2009),

using information about the proximity of the keywords (Kumar & Tomkins, 2010)

and user feedback (Zenz et al., 2009).

Differently from the other tools, we implemented a translation algorithm that:

i) uses schema and query abstractions that capture what is common to all graph

databases with schema, thereby allowing to extend it for any graph database; ii)

match keywords with metadata and values; iii) allows matches that may be exact,

contain, or fuzzy; iv) considers KwQ+; and v) incorporates a heuristics based on

that users prefer answers that induce minimal connected graphs, that is, not only the

joins are minimized but also the “size” of the answers.

The approach is fully automatic because the algorithm always produces

answers without user intervention; only when the algorithm fails, that is, none of

the generated queries are relevant to the user, the tool produces new answers based

on the user feedback.

The tool has no mechanism to rewrite queries or to enrich the keywords with

an ontology, but it has an autocomplete mechanism to help the user select terms that

occur in the database.

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

3
The Keyword Search Problem

3.1 Advanced Keyword Query

This section presents the concepts involved in the definition of an advanced

keyword query (KwQ+).

A keyword is a literal. A simple keyword-based query is a set K such that each

kK is a literal. A boolean function given a literal, returns a Boolean value. An

advanced keyword query is a set K such that each mK is either a pair m=(k,f),

where k is a literal and f is a Boolean function , or m is a literal. If m is a pair m=(k,f),

we denote km=k and fm=f, and if m is a literal, we denote km=m and fm=∅.

We say that a keyword k and a literal v match iff k and v are similar according

to a given similarity function sim and a given threshold , that is, sim(k,v)>.

3.2 Answers for an Advanced Keyword Query

3.2.1. RDF Environment

This section presents a formal definition for the notion of an answer for a keyword-

based query over an RDF dataset.

The RDF environment assumes that each RDF dataset T follows an RDF schema

S, with ST, that is, the RDF schema is indeed defined and is part of the RDF

dataset.

Let K be a KwQ+ query. We say mK has a metadata match with a triple

(r,p,v)S iff r is a class or property defined in S and km and v match. We say that

mK has a data match with a triple (r,p,v)TS iff km and v match (note that

(r,p,v)TS and, hence, the triple is not part of the schema).

An answer for K over T is defined as a set A of triples in T, partitioned into three

sets, ACM, APM, and ADM, such that there are three possibly empty subsets of K,

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 26

denoted K/ACM, K/APM and K/ADM, the members of K that are matched by A, such

that:

(1) For each mK/ACM, there is (r,p,v)ACM such that m has a metadata match

with (r,p,v), and r is declared as a class in S.

(2) For each mK/APM, there is (r,p,v)APM such that m has a metadata match

with (r,p,v), and r is declared as a property in S.

(3) For each mK/ADM, there is (r,p,v)ADM such that m has a data match with

(r,p,v).

(4) For each (r,p,v)ACM, there is (s,rdf:type,t)ADM such that t=r or t is a subclass

of r in S.

(5) For each (r,p,v)APM, there is (s,t,l)ADM such that t=r or t is a subproperty

of r in S, and fm=∅ or fm(l)=true, where mK/APM and m has a metadata match

with (r,p,v).

(6) GDM, the graph induced by ADM, is connected.

(7) There is no other answer B for K over T such that B matches more keywords

in K than A.

As expected, Conditions (1), (2) and (3) say that a keyword k may have a

metadata match or a data value match with a triple (r,p,v) of the answer A.

Conditions (4) and (5) are not so obvious, though. They capture the interpretation

that, if the user selects a class or a property (via a keyword), he actually wants an

instance (and not all instances) of that class or property (other instances may be

returned upon request). Specifically, Condition (5) assures that values of the

properties that match with keywords that have a Boolean function associated will

satisfy it. Condition (6) avoids disconnected answers. Condition (7) requires that an

answer must match as many keywords in K as possible. Also, Conditions (1), (2),

and (3) do not require that all keywords in K be matched in an answer.

3.2.2. Relational Environment

This section presents a formal definition for the notion of an answer for a keyword-

based query over a relational database. We indicate how to adjust the definitions in

Section 3.2 for the relational environment.

As usual, a relation scheme is denoted as U[P1,...,Pn], where U is the name

and P1,...,Pn are the attributes of the scheme. A foreign key is an expression of the

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 27

form F(U:L,V:M), where F is the name of the foreign key, U and V are names of

relation schemes, and L and M are lists of attributes of U and V, respectively, with

the same length. We say that F(U:L,V:M) connects U to V.

A relational schema is a pair S=(,) such that  is a set of relation schemes

and  is a set of constraints. A schema S=(,) induces a labeled multigraph GS =

(NS, ES, ELS) such that: NS= and there is an arc (U,V)ES, which ELS labels with

F, iff there is a foreign key F(U:L,V:M) in . Note that GS is a multigraph since

there might be more than one foreign key between the same pair of schemes.

A consistent database state  of S=(,), or simply a database with schema

S, is defined as usual and assigns a relation [U] to each relation scheme U so

that all constraints in  are satisfied. A set T of tuples from the relations in 

induces a labeled multigraph GA=(NT,ET,ELT) such that NT=T and there is an arc

(u,v) in ET, which ELT labels with F, iff u[U], v[V], with u[L]=v[M], and there

is a foreign key F(U:L,V:M) in .

Let K be a KwQ+. An mK has a metadata match with a relation scheme or

an attribute P in S with description v iff km and v match. A keyword mK has a data

match with t[P], where U is a relation scheme in S, P is an attribute of U, and

t[U], iff km and v match.

An answer for K over a database , with relation schema S, is a triple

A=(ASM,AAM,ATM), where

 ASM is a set of relation scheme of S

 AAM is a set of pairs (U,P), where U is a relation scheme of S and P is an

attribute of U

 ATM is a set of triples (U,P,t), where U is a schema name of S, P is an attribute

of U, and t[U]

such that there are three possibly empty subsets of K, denoted K/ASM, K/AAM, and

K/ATM, the members of K that matched by A, such that:

(1) For each mK/ASM, there is U in ASM such that there a metadata match

between m and the description of U.

(2) For each mK/AAM, there is (U, A) in AAM such that there is a metadata match

between m and the description of A in U.

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 28

(3) For each mK/ATM, there is (U, A, t) in ATM such that there a data match

between m and t[A].

(4) For each U in ASM, there is (U,A,t) ATM, and fm=∅ or fm(t)=true, where

mK/AAM has a metadata match with the description of A in U.

(5) GDM, the graph induced by ASM, is connected.

(6) GTM, the multigraph induced by the tuples in ATM, is connected.

(7) There is no other answer B for K over T such that B matches more keywords

in K than A.

3.3 User Intentions

As we mention in Section 2.2, in general, search statements are incomplete, and

relevance depends on the subjective opinion of users. Given a set of possible answer

for a KwQ+, which would be the most interesting for the user?

Generally, there are two obstacles to a KwS database system. First, it is the

ambiguity of keywords. Given a keyword, we may have multiple ways to interpret

the keyword. A system should figure out which interpretation is correct, given the

context of the keywords. The second obstacle is the ambiguity of query structures.

Even if each keyword has been correctly interpreted, how to represent the complete

query intention is also a challenging task.

Example: Ambiguous query.

Given K={“Panama”, ”City”, ”Population”}, the user intentions may be

interpreted as:

Intention 1. the population of “Panama City”,

Intention 2. the cities of Panama and the population of each one,

Intention 3. the population of Panama and the cities of Panama.

3.3.1. Assumptions

To deal with this problem, we consider the following assumptions about user

intentions:

U1. The user selects resources by specifying keywords that match the

resources’ property values.

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 29

U2. The user prefers resources that, individually, match as many keywords

as possible.

U3. The user prefers to observe as few resources as possible.

U4. The user prefers to observe resources that are interrelated.

Summarizing, based on assumptions U1, U2, U3, and U4, we consider that

users prefer minimal answers, those that induce minimal, connected graphs and that

match as many keywords as possible. The next section introduces the formal

definition of the minimal answer.

3.3.2. Minimal Answer

The answer definitions given in Section 3.2 do not force an answer A to be minimal

but based on the assumptions users prefer minimal answers. To define minimal

answers, we introduce a total order between answers for both environments.

Minimal answer in the RDF environment: A total order between answers, denoted

“”, such that AB iff |A||B|, where || denotes the cardinality of a set . An answer

A for K over T is minimal iff there is no other answer B for K over T such that BA.

Example: Comparing answers in RDF dataset.

Consider:

 A1={ACM,APM,ADM}, with ACM={}, APM={(:population, rdfs:label,

“Population”)} and ADM={(:panama_city, :name, “Panama City”);

(:panama_city, :population, “880 691”)}.

 A2={ACM,APM,ADM}, with ACM={(:city, rdfs:label, “City”)}, APM={(:population,

rdfs:label, “Population”)} and ADM={(:panama, :name, “Panama”); (:colon,

rdf:type, :city); (:colon, :population, “253 366”); (:colon, :of_country,

:panama)}

 A3={ACM,APM,ADM} with ACM={(:city, rdfs:label, “City”)}, APM={(:population,

rdfs:label, “Population”)} and ADM={(:panama, :name, “Panama”); (:colon,

rdf:type, :city); (:panama, :population, “4 162 618”); (:colon, :of_country,

:panama)}

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 30

Hence, we have, by definition of total order, that |A1||A2|||A3|.

Minimal answer in Relational environment: A total order between answers “” such

that AB iff |ASMAAMATM||BSMBAMBTM|, where A=(ASM,AAM,ATM) and

B=(BSM,BAM,BTM). An answer A for K over a database , with relation schema S, is

minimal iff there is no other answer B for K over  such that BA.

Example: Comparing answers in relational database.

Consider:

 A1={ASM,AAM,ATM} with ASM={}, AAM={(population, city)} and ATM={(city,

name, “Panama City”,); (city, population, “880 691”), }

 A2={ASM,AAM,ATM } with ASM={(city)}, AAM={(city, population)} and

ATM={(country, name, “Panama”); (city, name, “Colon”); (city, population,

“253 366”); (city, of_country, “Panama”)}

 A3={ASM,AAM,ATM } with ASM={(city)}, AAM ={(country, population)} and

ATM={(country, name, “Panama”), (city, name, “Colon”); (country, population,

“4 162 618”); (city, of_country, “Panama”)}

Hence, we have, by definition of total order, that |A1||A2|||A3|.

3.3.3. Matches Filtering

Additionally, to help assist in the keyword disambiguation problem, we also assume

that the order of the keywords and the type of Boolean function may also contain

hints about the user intentions.

Example: Keyword Order.

Consider the query K={(“country”), (“city”), (“population”)}. Intuitively, it

makes more sense to interpret K as requesting the population of the cities, since

“city” and “population” appear next to each-other, than to interpret K as requesting

the population of the countries. Thus, we may discard metadata matches with the

keyword “population” that do not represent the population of the cities.

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 31

As another example, consider the query K={(“city”), (“population”),

(“country”)}. The user probably requires the population of a city or country but not

of a province or something else. Again. we may discard metadata matches with the

keyword “population” that do not represent the population of cities or countries.

Finally, for the query K={ (“population”)}, we may discard any metadata

match.

Example: Type of the Boolean function.

Given the query K={(“census”, f1)}, where f1 is a function that returns True iff a

literal is equal to the date “January 18, 2020”. For the metadata matches with the

keyword “census”, we may therefore discard those properties or attributes for

which do not have values that are dates.

In what follows, we use FilterByCloseEntity and FilterByDataType when we

discard matches due to the order of the keywords and to the type of the Boolean

function, respectively.

3.4 Chapter Conclusion

In this chapter, we presented the formal definition of the Keyword Search problem,

for RDF dataset and relational databases. We also discussed some assumptions

about the user intentions, such as users prefer minimal answer, and the order of the

keywords may have information about the user intentions. Based on the definition

of the problem, as well as our assumptions about the user intentions, we proposed

the translation algorithm presented in the next section.

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

4
The Keyword Search Algorithm

This chapter presents the algorithm that translates a KwQ+ query to a SPARQL or

SQL. Section 4.1 presents the general definitions used by the translation algorithm.

Section 4.2 details the translation algorithm. Finally, Section 4.3 presents the

feedback algorithm.

4.1 General definitions

This section introduces some general definitions that are used in what follow.

4.1.1. Graph Database Schema

In this section, we define the notion of an abstract schema that is independent of

the environment and argue that we can map any database schema into an abstract

schema.

An entity is a pair e=(r,L), where r(0,1], and L is a set of literals; we denote

ranking(e)=r and labels(e)=L.

Example: e1=(0.9,{“Country”}).

A data property is a tuple p=(r,e,L,D), where r(0,1], e is an entity, L is a set

of literals, and D is a set of datatypes; we denote ranking(p)=r, domain(p)=e,

labels(p)=L and dtypes(p)=D.

Example: p1=(0.5, (0.9,{“Country”}), {“Population”}, {xsd:numeric})

A join is a triple j=(r, e1, e2), where r(0,1] and e1 and e2 are entities; we

denote ranking(j)=r, domain(j)=e1 and range(j)=e2.

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 33

Example: j1=(1.0, (0.9,{“Country”}), (0.8,{“City”})).

An abstract schema, or simply a schema, is a tuple S=(E,P,J,ɱ), where:

 E is an entity set

 P is a property set

 J is a join set

 ɱ: E∪P∪J → DATABASE_ELEMENT maps a schema element to a

database schema element.

We denote E(S)=E, P(S)=P, J(S)=J and ɱ(S)=ɱ.

A schema S induces an undirected multi-graph G(S)=(Vs,Es), where Vs=E(S)

and Es=J(S).

Table 1 maps the concepts of the schema with the concepts of Relational

Databases and RDF Datasets.

Table 1 Mapping of Schema Concepts

Schema Concept Relational Databases RDF Datasets

entity Table rdfs:Class

property Attribute owl:DatatypeProperty

join Foreing key owl:ObjectProperty

A resource of the schema is an entity, a property or a join.

The rest of this section presents two examples of how to construct the schema

of a database. The first example shows how to construct a schema for an RDF

dataset, and the second shows how to construct a schema for a relational database.

In Chapter 5, we explain more formally how to map the database schema or an RDF

schema to a schema.

Example: An abstract schema for an RDF dataset.

For RDF datasets, the entities correspond to the classes declared in the RDF schema

using rdfs:Class, the properties to the RDF datatype properties declared in the RDF

schema using owl:DatatypeProperty, the joins to the RDF object properties

declared in the RDF schema using owl:ObjectProperty, and ɱ relates an element to

the URI of the corresponding resource declared in the RDF schema. For the RDF

schema in Figure 6, the schema would be the tuple (E,P,J,ɱ), where:

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 34

 E={e1,e2}, where e1=(0.9, {“Country”}) and e2=(0.8, {“City”}).

 P={p1,p2,p3,p4}, where

o p1=(0.9, e1, {“Population”}, {xsd:numeric})

o p2=(0.8, e2, {“Population”}, {xsd:numeric})

o p3= (0.9, e1, {”Name”}, {xsd:string})

o p4=(0.8, e2, {”Name”}, {xsd:string})

 J={j1}, where j1=(0.9, e1, e2)

 ɱ={(e1, :country), (e2, :city), (p1, :population+:country), (p2, :population+:city),

(p3, :name+:country), (p4, :name+:city), (j1, :of_country)}

Note: Bold square elements are rdfs:Class, dashed square elements are owl:DatatypeProperty and

italic square elements are owl:ObjectProperty.

Figure 6. RDF Dataset.

Example: An abstract schema for a relational database.

For relational datasets the entities are the tables, the properties the attributes of the

tables, the joins the foreign key constraints, and ɱ relates an element with its

correspondent name in the database. For the database in Figure 7, the schema is the

tuple (E,P,J,ɱ), where:

 E={e1,e2}, where e1=(0.9, {“Country”}) and e2=(0.8, {“City”})

 P={p1,p2,p3,p4}, where

o p1=(0.9, e1, {“Population”}, {NUMBER})

o p2=(0.8, e2, {“Population”}, {NUMBER})

o p3=(0.9, e1, {”Name”}, {VARCHAR})

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 35

o p4= (0.8, e2, {”Name”}, {VARCHAR})

 J={j1}, where j1=(0.9, e1, e2)

 ɱ={(e1, country), (e2, city), (p1, population+country), (p2, population+city), (p3,

name+country), (p4, name+city), (j1, city_country)}

Figure 7. Relational Database.

4.1.2. Boolean Functions and Buckets

In what follows, we extend the definition of a Boolean function f, saying that f may

be expecting a literal l of a specific datatype, denoted datatype(f).

Example: Let f be a function that returns True iff a literal is equal to the date

“January 18, 2020”. Then, we have that datatype(f)= “date”.

A bucket associates an element of the schema (entity or property) with a set

of keywords.

An entity bucket bE is a pair bE = (e, K), where e is an entity, and K is a set of

keyword; we denote entity(bE) = e and keywords(bE)=K.

A property bucket bP is a triple bP=(p,K,f), where p is a property, K is a set of

keywords, and f is a Boolean function; we denote property(bP)=p, keywords(bP)=K

and bexpr(bP)=f.

A value bucket bv is a pair bV=(p, K), where p is a property and K is a set of

keyword; we denote property(bV)=p and keywords(bV)=K.

For a bucket set B, we define that keywords(B)=⋃bB keywords(b), BE(B) is

the bucket set with the entity buckets in B, BP(B) is the bucket set with the property

buckets in B, and BV(B) is the bucket set with the value buckets in B.

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 36

4.1.3. Nucleus and Abstract Query

A nucleus associates an entity bucket with property buckets belonging to the same

entity. More precisely, a nucleus n is a triple n=(be,BP,BV), where be is an entity

bucket, BP is a set of property buckets, and BV is a set of value buckets such that,

for each bucket b in BP or BV, domain(p) = entity(be), where p = property(b). We

denote entity(n) = entity(be) and keywords(n) = keywords(be) ∪ keywords(BP) ∪

keywords(BV).

Given a set N of nucleuses, the entity set E induced by N, denoted entities(N),

is defined as ⋃nN (entity(n)).

An abstract query aq is a pair aq=(N,J), where N is a nucleus set and J is a

join set. An abstract query induces a graph, where the nodes are the nucleuses and

the edges are the joins of the query. An edge j joins the nucleuses n1, n2 iff

domain(j)=entity(n1) and range(j)=entity(n2) or domain(j)=entity(n2) and

range(j)=entity(n1).

4.2 Translation Algorithm

A naïve algorithm that finds all matches, generates all possible answers with the

matches, and then selects the minimal answers is not feasible for a large and

ambiguous dataset. For instance, if we search IMDb RDF dataset looking for the

keyword rocky in some value, we find 9,600 triples, for the keyword sylvester, we

find 4,237 triples, and for keyword stallone, we find 1,242 triples. This would

generate billions of possible answers to be analyzed.

Therefore, we looked for strategies to minimize these problems. The first

strategy is that the translation algorithm proposed should be schema-based. Among

the advantages of adopting this strategy, we have: (i) the algorithm does not analyze

the triples or tuples themselves, but rather it groups the matches at the level of

entities and properties; (ii) the algorithm does not generate the connection between

every collection of triples or tuples, but rather it generates a graph at the schema

level; iii) the algorithm synthesizes SPARQL or SQL query, leaving the

responsibility for finding the actual instances, and paths between instances, to the

database management systems, which were designed for this purpose. The second

strategy is to generate a few potential queries that, possibly, induce minimal

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 37

answers. To find the potential queries, the translation algorithm implements

heuristics that try to capture the user intentions, addressing the problems of which

interpretation of the keywords is correct and which query structure should be

produced.

Figure 8 presents an overview of the main steps of the translation algorithm.

Given a set of matches, the first heuristic, called the match heuristic, discards some

matches and builds the buckets from the remaining matches. The heuristic discards

matches according to a threshold, the order of the keywords and the Boolean

function present in the keyword query. The Build Buckets algorithm implements

the match heuristic. The second heuristic, called the nucleuses heuristic,

implements a greedy algorithm that, given the nucleuses built from the buckets,

constructs the small nucleus set that best covers the keywords. The Build Nucleuses

and Select Nucleuses algorithms implement the nucleuses heuristic. The last

heuristic, called the connection heuristic, find the best, minimal way of connecting

the entities in the nucleuses. The Connect Entities algorithm implements the

connection heuristic. The abstract query is created from the nucleus resulting from

Step3 and the joins resulting from Step 4. Then, the abstracts query is compiled into

a structured query in SQL or SPARQL, and executed in the database to compute

the results of the keyword query.

Figure 8 Algorithm Overview

Section 4.2.1 describes the pre-processing algorithm that builds an index

with information about the shortest paths between the entities of the schema; this

index is used by the heuristics. Section 4.2.2 corresponds to the match heuristic.

Sections 4.2.3 and 4.2.4 describe the nucleuses heuristic. Section 4.2.5 details the

connection heuristic. Finally, Section 4.2.6 outlines the entire algorithm.

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 38

4.2.1. Shortest Path Index

This section presents a pre-processing algorithm that basically computes an index

containing the information about the shortest paths between each pair of entities in

the schema. The shortest path index construction does not depend on the user query

but on the schema, so it is built once by database, but if the database schema

changes, it needs to be updated. The algorithms that we will introduce in Sections

4.2.4 and 4.2.5 use this index to find the minimal join set to build connected

answers.

The shortest path index is defined as two functions: δ, or the shortest-path

distance values, and π, or the shortest-path building information.

As we mentioned in Section 2.1, the Floyd-Warshall algorithm is an

alternative to compute the all-pairs shortest-paths distances in a graph (Cormen et

al., 2009). The performance and space complexity of the classical Floyd-Warshall

algorithm (in short FW-C) depends on the number of nodes in the graph, in our case

the number of entities in the schema, that is O(|E(S)|3) and O(|E(S)|2), respectively.

FW-C outputs:

 δ: E(S)E(S)→ℝ , where δ(e1,e2)=n indicates that n is the weight of the shortest

path from entity e1 to entity e2

 π: E(S)E(S)→E(S), where π(e1, e2)=e3 indicates that e3 is the successor of entity

e1 in the shortest path to entity e2.

With δ we know the length of the shortest paths and with π we can build the

shortest path itself. Note that with π we can build a unique shortest path p between

e1 and e2, but other shortest paths may exist. Figure 9 shows a graph with two

shortest paths between nodes B and D.

Figure 9. Example of two shortest path between the nodes B and D.

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 39

Following the idea that users prefer minimal answers, we are interested in

answers with fewer joins. We also consider that the FW-C is limited, and only finds

one shortest path between two entities, although there might be others.

We use a modification of FW-C, that we call FW-2, where the computation

of π is adjusted to find more than one shortest path between two nodes. In FW-2,

π(e1,e2)=P, where P is the set that contains the pairs (e,j) such that there exists a

shortest path p between e1 and e2, where e is the successor of e1 on the shortest path

p based on the join j. With π, we recursively build all shortest paths between two

entities (for more details, see Section 4.2.5). As in FW-C, δ(e1,e2)=n indicates that

n is the weight of the shortest path from entity e1 to entity e2.

Given the graph G induced by the schema S, Algorithm 1 computes the

shortest path index, which is δ and π. Comparing with the implementation of FW-

C in Cormen et al. (2009), the differences are in lines from 16 to 18 that build π. It

is easy to realize that the performance complexity of FW-2 is Ω(|E(S)|3), in the best

case, when there is a unique shortest path for each pair of vertex, and is O(|E(S)|4),

for the worst cases. Similarly, the space complexity is Ω(|E(S)|2) and O(|E(S)|3).

Algorithm 1 FW-2

Input: G=(E(S),J(S))

Output: δ, π

1. δ, π  {}, {}

2. for each entity e1 in E(S)

3. for each entity e2 in E(S)

4. δ(e1,e2)  if e1=e2 then 0 else then ∞

5. π(e1,e2)  {}

6. for each join j in J(S)

7. δ(domain(j),range(j))  1

8. π(domain(j),range(j))  (range(j),j)

9. δ(range(j),domain(j))  1

10. π(range(j),domain(j))  (domain(j),j)

11. for each entity eK in E(S)

12. for each entity e1 in E(S)

13. for each entity e2 in E(S)

14. if δ(e1, e2) > δ(e1, eK) + δ(ek, e2) then

15. δ(e1, e2)  δ(e1, eK) + δ(ek, e2)

16. π(e1, e2)  π(e1, ek)

17. elseif δ(e1, e2) = δ(e1, eK) + δ(ek, e2) then

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 40

18. π(e1, e2)  π(e1, e2)∪ π(e1, ek)

19. return δ, π

Example: Pre-processing algorithm.

Given the graph G=(E,J), Figure 10 shows G, E={e1,e2,e3,e4}, where e1=(1,{“e1”}),

e2=(0.9,{“e2”}), e3=(0.8, {“e3”}) and e4=(0.7, {“e4”}) and J={j1, j2, j3, j4, , j5}, where

j1=(1.0,e1,e2), j2=(0.9,e1,e4), j3=(0.9,e1,e3), j4=(0.9,e2,e4), and j5=(0.9,e3,e4).

Figure 10 Graph Example

The output of the Algorithm 1 for G is:
Table 2. Example of δ.

 e1 e2 e3 e4

e1 0 1 1 1

e2 1 0 2 1

e3 1 2 0 1

e4 1 1 1 0

Table 3. Example of π.

 e1 e2 e3 e4

e1 [] [(e2, j1)] [(e3, j3)]) [(e4, j2)]

e2 [(e1, j1)] [] [(e1, j1), (e4, j4)] [(e4, j4)]

e3 [(e1, j3)] [(e1, j3), (e4, j5)] [] [(e4, j5)]

e4 [(e1, j2)] [(e2, j4)] [(e3, j5)] []

Note that, given π, we know that there are at least two shortest paths between

e2 and e3.

4.2.2. Building Buckets

This section outlines Build Buckets algorithm, which is the first step of the

translation algorithm, and also corresponds to the match heuristic. The concept of

bucket is related to assumption U2 (see Section 3.3.1), which says that users prefer

resources that, individually, match as many keywords as possible; a bucket

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 41

therefore contains the information about how many and which keywords an element

of the schema covers. This algorithm associates an element e of the schema S with

a set of keywords K such that, for each kK, k matches e. Some of the matches are

discarded according to a threshold, to the order of the keywords, and to the Boolean

function presented in the query. Algorithm 2 presents the pseudo-code of this

process.

Algorithm 2 has as inputs a KwQ+ K, the schema S, the functions ƒME, ƒMP

and ƒMV, and a similarity threshold . The algorithm finds the matches between a

keyword and an element of the schema, using the functions ƒME, ƒMP, and ƒMV, in

lines from 5 to 7. Those functions need to be implemented for each environment.

The full details about the implementation of the functions for each environment are

presented in Section 5.5.1.

In more detail, ƒME is a function that maps a schema, a keyword and a number

(0,1] to a subset of E(S) and is such that ƒME(S, k,)=E’ indicates that each entity

in E’ has at least a label that matches the keyword k with similarity greater than the

threshold .

 ƒMP is a function that maps a schema, a keyword and a number (0,1] to a

subset of P(S) and is such that ƒMP(S,k,)=P’ indicates that properties P’ has at least

a label that matches the keyword k with similarity greater than the threshold .

ƒMV is a function that maps a schema, a keyword and a number (0,1] to a

subset of P(S) and is such that ƒMV(S, k,)=P’ indicates that the properties in P’

have at least one value that matches the keyword k with similarity greater than the

threshold .

Given the elements of the schema that match a keyword, the algorithm builds

bucket sets Bo and Bf, where Bo contains the buckets built from all matches found,

in line 8, and Bf contains the buckets built from the relevant matches.

Section 3.3.3 introduces the notion that some matches may be irrelevant. To

build Bf, we exclude irrelevant matches using the functions FilterByCloseEntity and

FilterByDatatype, in line 9. FilterByCloseEntity excludes those property matches

that do not have as domain any of previous entity matches or the next entity match.

FilterByDatatype excludes those that cannot be applied to the properties that match

the keyword because of the Boolean function associated with the keyword.

More formally, we have:

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 42

FilterByCloseEntity: Two keywords k and k’ are close in a KwQ+ K, if k

occurs immediately after or before k’ in K. If a keyword k matches an entity e, and

another keyword k’, close to k, matches a set of properties P, the properties pP

such that domain(p)≠e have a better chance of being irrelevant elements for the

user. Given a property set P and an entity set E, FilterByCloseEntity is then defined

as:

𝐹𝑖𝑙𝑡𝑒𝑟𝐵𝑦𝐶𝑙𝑜𝑠𝑒𝐸𝑛𝑡𝑖𝑡𝑦 (𝑃, 𝐸)

= {
{𝑝 ∈ 𝑃|𝑑𝑜𝑚𝑎𝑖𝑛(𝑝) ∈ 𝐸}, if (∃𝑝 ∈ 𝑃)(𝑑𝑜𝑚𝑎𝑖𝑛(𝑝) ∈ 𝐸)
𝑃 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

FilterByDatatype: Given a property p and a Boolean function f, we say that f

can be applied to p iff the datatype(f)dtypes(p). If mK, where K is a KwQ+ query

and km matches a set of properties P, the properties pP such that f cannot be

applied to p have a better chance of being irrelevant elements for the user. Given a

property set P and a Boolean function f, FilterByDatatype is then defined as:

𝐹𝑖𝑙𝑡𝑒𝑟𝐵𝑦𝐷𝑎𝑡𝑎𝑡𝑦𝑝𝑒(𝑃, 𝑓)

= {
{𝑝 ∈ 𝑃| 𝑓 𝑐𝑎𝑛 𝑏𝑒 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 𝑡𝑜 𝑝} ∃𝑝∈𝑃𝑓 𝑐𝑎𝑛 𝑎𝑝𝑝𝑙𝑦 𝑡𝑜 𝑝

𝑃 otherwise

Bo does not involve in any other step of the translation algorithm, but the

Feedback algorithm uses it. How to use user feedback to generate different answers

is discussed in section 4.3.

Algorithm 2 Build Buckets

Input: K, S, ƒME, ƒMP, ƒMV; 

Output: Bo, Bf

1. Initialize Bo as an empty set

2. Initialize Bf as an empty set

3. Initialize me-1, mp-1, km-1, f-1, mv-1 for save the information about de previous iteration

4. for each mK

5. Create the set me that contains the entities in S that have metadata match with

m, that is the return of ƒME(S,km,)

6. Create the set mp that contains the properties in S that has metadata match with

m, that is the return of ƒMP(S,km,)

7. Create the set mv that contains the properties in S that has data match with m,

that is the return of ƒMV(S,km,)

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 43

8. Update the buckets in Bo with the information that the elements in me,mp and mv

match with the keyword km.

9. Consider the sets

 mp’=FilterByCloseEntity(mp, me-1) ∩ FilterByDatatype(mp, fm), that is, the

properties in mp, filtered by the previous entities me-1 and the Boolean function fm;

 the set mp-1’= FilterByCloseEntity(mp-1, me) ∩ FilterByDatatype (mp-1, f-1), that is,

the properties in mp-1, filtered by the current entities in me and the Boolean function

f-1;

 the set mv’=FilterByCloseEntity(mv, me-1), that is, the properties in mv filtered by

the previous entities me-1; and

 the set mv-1’= FilterByCloseEntity(mv -1,me), that is, the properties in vp-1 filtered by

the current entities me.

10. Update the buckets in Bf with the information that the elements in me, mp’ and mv’

match the keyword km, and mp-1’, mv-1’ match the keyword km-1.

11. Update me-1, mp-1, km-1, f-1 and mv-1 with me, mp, mv, km and f-1, respectively.

12. Return Bo, Bf

If we analyze the bucket set Bf that Algorithm 2 outputs and the definition of

answer for RDF (relational) environment, we can say that: BE(Bf) represents the

metadata matches with classes (relation schemes) or ACM (ASM); BP(Bf) represents

the metadata matches with the properties (attributes) or APM (AAM); and Bv(Bf)

represents the data matches or ADM (ATM). The Build Nucleuses and Select

Nucleuses algorithms have as goal to reduce the sets BE, BP, Bv to obtain minimal

answer.

Example: Build Buckets algorithm.

Consider the schema of Section 4.1.1 and let K={“Country”, (“Population”, f)},

where f is a function that returns True iff a literal is greater than 10,000 and

datatype(f)=NUMBER.

The matches with the keyword “Country” are me1={e1} mp1={} and mv1={}

The matches with the keyword “Population” are me2={e1} mp2={p1, p2} and

mv2={p2}

Then, Bo={b1, b2, b3} and Bf ={b1, b2}, where b1= (e1, {“Country”}), b2=(p1,

{“Population”}, f) and b3= (p2, {“ Population”},f). Note that the set Bf does not

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 44

include the bucket b3, since line 9 excludes the property p2 of mp2, because the

domain of p2 does not belong to any of the entities in me1.

4.2.3. Build Nucleuses

This section outlines the Build Nucleuses algorithm, which is the second step of the

translation algorithm, and the first part of the nucleuses heuristic. This algorithm

builds the nucleus set derived from a bucket set. The concept of nucleus, as the

concept of bucket, are also related to the assumption U2 (see Section 3.3.1). A

nucleus groups the buckets that are related to the same entity. A nucleus expresses

the set of keywords that a resource of a class (RDF) or a tuple (relational) would

cover.

Given a bucket b, we define the function related_entity as:

𝑟𝑒𝑙𝑎𝑡𝑒𝑑_𝑒𝑛𝑡𝑖𝑡𝑦(𝑏) = {
𝑒𝑛𝑡𝑖𝑡𝑦(𝑏) if 𝑏 is an entity bucket

𝑑𝑜𝑚𝑎𝑖𝑛(𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦(𝑏)) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 Algorithm 3 details the Build Nucleuses algorithm. The input of the

algorithm is a bucket set B; each bucket b in B is assigned to a nucleus according to

the related_entity(b). The output is the nucleus set N.

Algorithm 3 Build Nucleuses

Input: B

Output: nucleus set N

1. N  {}

2. for each bucket be in BE(B)

3. Create a new nucleus with the bucket be and

 add the nucleus to N

4. for each bucket bp in Bp(B)

5. if exists a nucleus in N such that

 entity(n)=related_entity(bp)

 then add bp to N,

 else create a new nucleus with bp
 and add n to N.

6. for each bv in Bv(B)

7. if exists a nucleus in N such that

 entity(n)=related_entity(bv)

 then add bv to n,

 else create a new nucleus n with bp and add n to N.

8. return N

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 45

Example: Build Nucleuses Algorithm.

Consider again the schema of Section 4.1.1 and let Bo={b1, b2, b3} , where

 b1= (e1, {“Country”})

 b2=(p1, {“Population”}, ∅)

 b3= (p2, {“ Population”}, ∅)

Then, N = {n1, n2}, where n1 = (b1, { b2},{}) and n2 = ((e2, {}), {b3},{}).

The example reveals that resources of the entity e1, represented by n1, cover

the keywords “Country” and “Population”. However, resources of the entity e2

only cover the keyword “Population”.

4.2.4. Select Nucleuses

This section outlines the Select Nucleuses algorithm, the third step of the translation

algorithm, and the second and last part of the nucleuses heuristic. Given a nucleus

set, the algorithm returns another nucleus set, built from the original, that contains

the best nucleuses. Based in Section 3.3, the best nucleus set is the smallest nucleus

set that covers the largest set of keywords, and that has the best similarity between

the keywords and the elements of the nucleuses. However, the computation of the

best nucleus set is an NP-complete problem (by a reduction to the bin packing

problem). Then, the nucleuses heuristic tries to generate an approximate solution to

the problem. The main elements of this heuristic are: (i) the best nucleus algorithm;

(ii) the greedy algorithm that, given a KwQ+ query K and a schema S, builds the

best nucleus set, using the best nucleus algorithm.

To compute the best nucleus, the algorithm uses the function score. Given a

schema S, a KwQ+ query K and a nucleus (or bucket), the function score expresses,

quantitatively, the relevance of the nucleus (or bucket) for the query. The score

function depends on the environment and is detailed in Section 5.5.2. Note that we

can generate different heuristics for finding the best nucleus, using different score

functions.

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 46

4.2.4.1. Best Nucleus Algorithm

Given a nucleus set, which is the best nucleus? The answer of this question depends

on the user intention that, as already discussed, is ambiguous. Then, we propose a

heuristic that tries to guess the user intention.

Obvious ideas about the best nucleus explore the number of keywords that

the nucleus cover, the similarity of the metadata matches, or the values matches

with the keywords, etc. These ideas are grouped, quantitatively, in the function

score.

What is not so obvious is the idea that the best nucleus is not necessarily a

nucleus in N, but it would be a nucleus built from one of the nucleuses in N.

Following the idea that users prefer minimal answers, we assume that two buckets

in a nucleus should not cover the same keywords, because we can remove one of

the buckets without affecting the number of keywords that are covered by the

nucleuses, that is equivalent to reduce the answer. The following examples analyze

the importance of reducing the nucleuses.

Example. Reduce nucleuses.

Given the query K={“Country, (“Population”, f)}, where

 f is a function that returns True iff a literal is greater than one million

 e1=(0.9, {“Country”})

 p1=(0.5, e1, {“Population”}, {xsd:numeric})

 p2=(0.45, e1, {“Population Density”}, {xsd:numeric})

 n = (b1, { b2, b3},{}), where

o b1= (e1, {“Country”})

o b2=(p1, {“Population”}, ∅)

o b3= (p2, {“Population”}, ∅).

The nucleus n indicates to retrieve the countries that have population and

population density greater than one million, that is, no country. However, if we

reduce n to n´= (b1, { b2 },{}), we build a nucleus that covers the same keyword set

and has several answers, since the nucleus n´ indicates to retrieve the countries with

population greater than one million (probably the real user intention).

As another example, given K = {“City”}, with

 e1=(0.8,{“City”})

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 47

 p1=(0.8, e1, {”Name”}, {xsd:string})

 the nucleus n={b1,{},{b2}}, where b1= (e1, {“ City”}) and b2=(p1, {“City”})

 The nucleus n indicates to retrieve the cities with the word “City” in the

name. A nucleus only with the bucket b1 indicates to retrieve all cities in the

database. Again, the second case would probably be the real user intention.

Algorithm 4 outlines the best nucleus algorithm. It has as input the set of

nucleuses N, the function score and the keyword set K. It has as output the best

nucleus ns. If two nucleuses have the same score, we select as the best nucleus that

with the entity with higher ranking.

Given a nucleus set, the first step of the best nucleus algorithm is to reduce

each nucleus by keeping buckets that do not share keywords. Section 4.2.4.2

handles the problem of reducing a nucleus. Then, the algorithm finds and returns

the nucleus with the greatest score.

Algorithm 4 Best Nucleus

Input: N, score, K

Output: ns

1. Create the reduced nucleus set Nr from N using Algorithm 5, score and K

2. Find the nucleus ns in Nr with the greatest score for the query K

3. return ns

4.2.4.2. Reduce Nucleus

In the previous section, we discussed why we need to reduce a nucleus when it has

at least two buckets sharing a keyword. Ideally, the bucket set that will remain in

the nucleus is the smallest bucket subset that covers the same keywords that the

original set and that better covers the keywords, based on some score. Again, the

reduce nucleus problem is an NP-complete problem, and again we address the

problem using a greedy algorithm to find an approximate solution. The greedy

algorithm prioritizes buckets with the greatest score.

Algorithm 5 details the greedy method that reduces a nucleus. It has as input

the nucleus n, the function score, and the keyword set K. It has as output the reduced

nucleus n’, which is a nucleus derived from n and is such that both nucleuses are

related to the same entity and cover the same keywords. The algorithm starts by

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 48

creating the nucleus n’ with the entity bucket of n. Then, it iteratively: (i) drops

from n the keyword set that n’ covers; (ii) finds the property bucket or value bucket

b in n with the greatest score; and (iii) adds b to n’. The iterations stop when there

are no buckets in n. If two buckets have the same score, we select as the best bucket

that with the property with higher ranking.

Disregarding a keyword set Kc from n implies to remove from the buckets in

n the keywords in Kc. After that, the disregard operation removes from n the buckets

b that do not cover keywords, that is, such that keywords(b)=∅. Note that the buckets

remaining in n in each iteration cover at least a keyword not covered by any of the

buckets previously selected.

Algorithm 5 Reduce Nucleus

Input: n, K, score

Output: n´

1. Initialize n´ with the entity bucket in n

2. while exists bucket in n

3. Disregard from n the keywords n´ covers

4. Find the bucket b in n with the greatest score for the query K

9. Add b to n´

10. return n´

4.2.4.3. Greedy Algorithm

The greedy algorithm generates a set Ns of nucleuses such that:

(1) Ns covers a large subset of keywords in K.

(2) All entities in Ns are in the same connected component of the graph induced

by the schema.

Algorithm 6 corresponds to a pseudo-code of the Select Nucleuses algorithm;

it has as input the KwQ+ query K, the nucleus set N, the shortest-path distance

values δ and the function score; and it has as output the set of nucleuses Ns.

First, it initializes the set Ns as the empty set. Next, it finds the best nucleus

in Ns, using Algorithm 4. Then, using δ, it removes from N those nucleuses that not

maintain connectivity with the best nucleus; that is nN such that

δ(entity(n),entity(ns))=∞, where ns is the best nucleus.

Iteratively, Algorithm 6 continues by: (i) adding the best nucleus to N; (ii)

disregarding from N the keyword set that the best nucleus covers; (iii) finding the

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 49

best nucleus among the nucleus remaining in N. The iterations stop when there is

no nucleus in N.

 Disregard a keyword set Kc from N implies to remove from all the buckets

in the nucleuses in N the keywords in Kc. After that, the disregard operation

removes from N the nucleuses n that do not cover keywords, that is, such that

keywords(n)=∅. Note that the nucleuses remaining in N in each iteration cover at

least one keyword not covered by any of the nucleuses previously selected.

Algorithm 6 Select Nucleuses

Input: K, N, δ, score

Output: Ns

1. Initialize Ns as empty set

2. Find the best nucleus, using Algorithm 4 with N, score, and K

3. Preserve the connectivity in Ns, that is, remove from N the nucleus n such that

δ(entity(n), entity(ns))=∞, where ns is the best nucleus

4. while there is a best nucleus

5. Add the best nucleus to Ns

6. Disregard from N the keywords that the best nucleus cover

7. Find the best nucleus, using Algorithm 4 with N,

 score and K

8. return Ns

4.2.5. Connect Entities

This section outlines the Connect Entities algorithm, which is the fourth step of the

translation algorithm, and which corresponds to the connection heuristic. As we

remarked in Section 3.3, the user prefers to observe resources that are interrelated

and prefers to observe as few resources as possible. In the previous section, we

introduced a heuristic to minimize the nucleus set, but we still need to interrelate

the nucleuses and keep the number of resources to the minimum.

The schema describes, through the joins, the valid ways to interrelate the

nucleuses. Two nucleuses n1 and n2 are related in a schema S iff there exists a path

between entity(n1) and entity(n2) in the graph induced by S. To handle both

problems, interrelate and minimize, we need to find the shortest join set that

connects the entities set induced by the nucleus, which is equivalent to finding the

minimum Steiner tree for the entity set in the graph induced by the schema S.

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 50

 However, the minimal Steiner tree problem is NP-Complete. There is a

heuristic proposed in Chopra & Rao (1994), called SteinerH, which produces a

Steiner tree whose weight is within a 2 − 2/t factor of the weight of the minimal

Steiner tree.

 Given a graph G=(V, E) for the set V´⊆V , the SteinerH algorithm computes

the minimal Steiner tree approximation in four main steps. The first step builds the

metric closure G´ of V´ in G. The metric closure for a set V´ in a graph G is the

complete graph G´=(V´,D), where each edge in (e1,e2)D is weighted by the

shortest path value δ(e1,e2) in G. The second step is to compute the minimum

spanning tree T of G´. The third step is to generate the set E´⊆E such that, for each

edge (v1,v2) in T, computing the shortest path p between each pair of vertices, v1 and

v2, in G, and then adding the edges of p to E´. The last step is to create the Steiner

tree approximation S=(V´,E´). Figure 11 and Figure 12 show examples of how the

SteinerH works. In the example of Figure 11, SteinerH finds a minimal Steiner

tree, but in the example of Figure 12, the heuristic fails. SteinerH runs in polynomial

time; finding the shortest path and the shortest path length can be solved in

polynomial time using Floyd-Warshall; building the metric closure is also

polynomial, and finding the minimum spanning tree of a graph is polynomial, using

Prim´s algorithm.

Figure 11. Example of the heuristic to find a minimum Steiner tree.

SteinerH solves the problem of finding a minimal Steiner tree approximation

efficiently. Returning to our original problem, to interrelate the nucleus in a minimal

way, SteinerH seems to solve the problem. It is easy to perceive that, given a graph,

multiple minimal Steiner tree may exist, as illustrated in Figure 13, but the result

returned by SteinerH may not satisfy the user. The concept of the best way for the

user, according to the assumptions of Section 3.3.1, is basically the minimal way.

All minimal Steiner trees for an entity set are good candidates for the user. The

https://en.wikipedia.org/wiki/Time_complexity#polynomial_time
https://en.wikipedia.org/wiki/Time_complexity#polynomial_time
DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 51

number of minimal Steiner trees for a graph would be exponential, since the number

is bounded by the number of spanning-trees of a complete graph of n vertices, which

is nn−2 (Smith, 2015). Considering that a single minimal Steiner tree seems limited

and all minimal Steiner trees would be computationally expensive, we propose a

modification to the SteinerH algorithm, called MultipleSteinerH in what follows, to

find at most m Steiner trees satisfying the approximation factor of SteinerH.

Figure 12. Example of a wrong result of the heuristic.

Figure 13. Example of multiple minimal Steiner Trees.

There are two points in SteinerH that should be changed to generate several

Steiner trees, preserving the conditions that validate the approximation factor. The

first one is step 2 of the algorithm that generates the minimum spanning tree (MST).

If there exists another MST, then we may generate different results, as MST 1 and

MST 2 in Figure 14. The second one is step 3 that generates the Steiner tree from

the shortest path between the nodes that have edges in the MST. If there is another

shortest path between two nodes that has an edge in the MST, then we may generate

different results too. The Steiner trees (a) and (b) in Figure 14 are generated from

MST 1, because there are two shortest paths between nodes E and D.

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 52

Fundamentally, MultipleSteinerH only finds different MST and other shortest paths,

and not only one, as in SteinerH.

Figure 14. Example of multiple spanning trees and shortest paths.

Summarizing, the MultipleSteinerH heuristic starts as SteinerH, producing

the metric closure of a graph. Then, it iteratively produces an MST (different from

those produced in other iterations). From the MST, it produces different Steiner

trees, when there are different shortest paths. The iterations continue until the

number of Steiner trees produced exceeds m, or the number of iterations exceeds

m, or there are no different MSTs to produce. Algorithm 7 details the

MultipleSteinerH algorithm.

Algorithm 7 has as input an entity set E, and functions δ and π. Section 4.2.1

introduced functions δ and π, computed from the FW-2 algorithm. Function π maps

two entities, e1 and e2, into a set P, where P is the set that contains the pairs (e,j)

such that exists a shortest path p between e1 and e2 where e is the successor entity

of e1 on the shortest path p based on join j. Note that, for π(e1,e2)=P, if |P|=c then

there are at least c different shortest paths between e1 and e2. Function δ maps two

entities, e1 and e2, into an integer n such that n is the weight of the shortest path

from entity e1 to entity e2.

Algorithm 7 MultipleSteinerH

Input: E, π, δ, m

Output: R

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 53

1. Compute the metric closure G´ using δ as a function of the graph that has as nodes

the entities in E

2. Initialize the set Tp as empty; Tp will contain the MSTs produced in the iterations of

the algorithm

3. Initialize i=0; i will count the number of iterations

4. while |Sp|<m (the number of Steiner trees produced does not exceed m) and i<m

(the number of iterations does not exceed m)

5. Compute the MST T from G´ such that T is different from any MST in Tp

6. If T does not exist, return m, there is no different MST to produce

7. Add T into Tp

8. Compute the set Si with at most m-|Sp| Steiner trees from T using π, that is, using

the different shortest paths between the entities that have an edge in T

9. Add to R those trees such that R is not contained in Si

10. return R

If we analyze step 5 of Algorithm 7, we note that a classical MST algorithm

does not exactly solve that problem. We also note that the classical path

reconstruction algorithm, given π (or path reconstruction algorithm for Floyd-

Wharsall algorithm) also does not solve the problem of step 8. Finally, step 9 has

as a challenge how to compare tree sets efficiently.

To solve the problem of step 5, we propose an adaptation to Prim´s algorithm,

that we refer to as Prim-2. Cormen, T. et al. (2009) details the original Prim´s

algorithm. Given a graph G=(V, J) and a tree set Tp, Prim-2 builds the spanning tree

T similarly to the original algorithm; the difference is that, when there are edges

with the same weight in a cut. In this case, Prim-2 tests if any of those edges does

not belong to a tree in Tp. If there is an edge that satisfies the test, Prim-2 adds that

edge to the spanning tree T. If, in any iteration of Prim-2, any edge satisfies the test,

Prim-2 returns that T does not exist, otherwise, Prim-2 returns T.

To handle the problem of step 9, we use a hash for a graph, where the nodes

are entities, and the edges are joins. Algorithm 8 outlines the pseudo-code of how

to calculate the hash. Basically, we propose the hash of a string as a hash of the

graph. The string is the concatenation of: the string“E:”; the string formed by ɱ of

the entities in the graph in S, comma-separated and sorted in ascending order; string

“J:”; and the string formed by ɱ of the joins in the graph in S, comma-separated

and sorted in ascending order.

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 54

Algorithm 8. Hash

Input: G=(E,J), S

Output: h

1. Initialize s as a string that contains “E:”

2. Sort the entities in E in increasing order by ɱ(S)(e), with e∈ E

3. Concatenate to s the string composed by the comma-separated ɱ(S)(e) values, with

e∈ E

4. Concatenate to s the string “J:”

5. Sort the joins in J in increasing order by ɱ(S)(j), with j∈ J

6. Concatenate to s the string composed by the comma-separated ɱ(S)(j) values, with

j∈ J

7. Set h as the hash of s

8. return h

For example, if we have an MST with the edges (e1, e2) and (e2, e3), where

there are 2 shortest paths between e1 and e2 and 3 shortest paths between e2 and e3,

the number of Steiner trees from the MST of the example will be 6. We can combine

each shortest path that connects e1 and e2 with each shortest path that connects e2

and e3. In brief, the solution that we implemented to solve Step 8 of Algorithm 7

explores those combinations, that is, for each edge in T, calculate the shortest path

set between the entities of the edge (using π) and combine the sets (cartesian

product) to create different Steiner trees. In fact, Step 8 of Algorithm 7 requests

producing a limited number of combinations (m-|Sp|); then, the cardinality of the

shortest path set is also limited to produce no more combinations than requested.

Algorithm 9 details the algorithm to solve Step 8 of Algorithm 7. It has as input the

tree T, the number m and the function π, and has as output the tree set Si, where the

|Si|≤m.

Algorithm 9. Find Trees

Input: T=(V,E), π, m

Output: Si

1. Initialize Ps as an empty set; Ps will contain the shortest path set, for each edge in E

2. for each edge (e1, e2) in E

3. Compute the set P, using π, where P has at most m shortest path set between

entities e1 and e2

4. Add P to Ps

5. Update the bound m to produce the correct number of combinations, that is,

m=m/|P|

https://www.thesaurus.com/browse/brief
DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 55

6. Js is the cartesian product of Ps

7. Initialize set Si as an empty set

8. for each set J in Js do

9. Create the tree S=(V,J)

10. Add S to Si

11. return Si

Algorithm 10 details how to resolve Step 3 of Algorithm 9, that is, to find at

most m shortest paths between two entities using function π. It has as output the set

P, where |P|≤m, and each set JpP is a minimal join set that connects the entities.

Algorithm 10 is a recursive algorithm that iterates for the pairs (e, j) in

π(e1, e2), and recursively finds P´ that contains at most m shortest paths between (e,

e2). Each iteration of the algorithm finds |P´| shortest paths; then, in each iteration,

the value of m is decreased by |P´|.

Algorithm 10. Shortest Paths

Input: e1, e2, π, m

Output: P

1. Initialize P as empty set

2. if e1 = e2 or π(e1, e2) is empty return P

3. Iterate for the elements (e,j) ∈π(e1, e2) in increasing order of the ranking of e

4. Compute the set P´ by recursively calling Shortest Paths using π with at most m

shortest paths between the entities

e and e2

5. Decrease m with the value of |P´|, that is m=m-|P´|

6. Create the set Pc, that is, the Cartesian product between the set {j} and P´

7. Add to P the set Pc

8. return P

Note that for m=1 the outputs of MultipleSteinerH and SteinerH are

equivalent.

4.2.6. Translation Algorithm

Algorithm 11 outlines the entire translation process, whose goal is to find minimal

answers for a KwQ+ query. The algorithm addresses this problem and finds

solutions that are probably minimal, because we use heuristics, instead of an exact

method. Sections from 4.2.1 to 4.2.5 detail the heuristics. Algorithm 11 has as input

https://en.wikipedia.org/wiki/Cartesian_product
DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 56

a KwQ+ K query, the schema S, functions δ, π, ƒME, ƒMP, ƒMV, score and query; and

the numbers  and m.

Recall that Section 4.2.1 defines functions δ and π, and explains how to

compute them; Section 4.2.2 defines functions ƒME, ƒMP and ƒMV, whose

computation depends on the environment and ; and Section 4.2.4 defines the

function score, which also depends on the environment.

Function query maps an abstract query to answers. Given an abstract query

Q, function query compiles a structured query in a specific environment query

language, executes the query in the environment, and returns as answers the result

of the execution. Obviously, how to compile and execute the query is a process that

depends on the environment, as detailed in Section 5.6.

Algorithm 11 executes in sequence steps from 1 to 4, which are Algorithm 2,

Algorithm 3, Algorithm 6 and Algorithm 7, respectively. Step 5 of the translation

algorithm is to create, for each tree T=(V,E) output by Algorithm 7, an abstract

query Q=(N,E), where N is the nucleus set output of Algorithm 6. Finally, it finds

answers from the abstract queries created using function query.

The main output of the Algorithm 11 is the answer set A, but the algorithm

also returns the bucket set Bo, output by Algorithm 2, and QA, the abstract query set

created in step 5. When the set A does not satisfy the user expectations, we use Bo

and QA, as we explain in Section 4.3, to find more answers.

Algorithm 11. Translate Algorithm

Input: K, S, δ, π, ƒME, ƒMP, ƒMV, score, query, , m

Output: A, QA, Bo

1. Build the buckets set Bo, Bf from K and S by running Algorithm 2 with input K, S, ƒME,

ƒMP, ƒMV, 

2. Build the nucleus set N from Bf by running Algorithm 3 with input Bf

3. Select the best nucleus Ns from N by running Algorithm 6 with input K, N, δ, score

4. Create the tree set R from the entities in Ns by running Algorithm 7 with input

entities(Ns), π, δ and m

5. Create the set QA by adding the abstract query Q=(Ns,J) to QA,

 for each tree T=(V,J) in R

6. Create the set A, initially empty

7. Iterate for each abstract query Aq in QA computing A=query(Aq,S) until |A|>0

8. return A, Bo, QA

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 57

As we use heuristics, we cannot claim that, given a KwQ+ query K, the output

A of Algorithm 11 contains minimal answers for K. But we may expect that

Algorithm 11 finds minimal answer in most of the cases. The general idea to prove

this claim is that the answers A are derived from an abstract query Q=(Ns,J) such

that: the construction Q leads to a connected graph (Step 3 and 4); by construction,

Ns is an approximation of the minimal bucket set that covers as many keywords as

possible (Step 1, 2 and 3); and, by construction, J is an approximation of the

minimal join set that connects the nucleuses in Ns.

4.3 User Feedback

In this section, we discuss what to do when the answers in A, that Algorithm 11

returns, do not meet the user intention. Most of the papers summarized in Section

2.3 propose to use a backtracking algorithm to generate alternative queries and

alternative results. Backtracking strategies can be computationally exhaustive and

confusing, and do not guarantee success. Then, we propose a mechanism for the

user to give feedbacks that enable building a set of answers A´ with better success

guarantees.

We can raise two reasons for a user not to be satisfied with an answer A: (i)

the user expected the resources that appear in the answers in A but interrelated in

different ways; or (ii) the resources in A are not what the user expected. Section

4.3.1 and 4.3.2 explain the feedback that users can give for the first and second

reasons, respectively.

4.3.1. Computing Alternatives to Interrelate the Resources

Suppose that the user expected the resources that appear in the answers in A but

interrelated in different ways. Or, in other words, the user agrees with the nucleuses

that Algorithm 11 selected, but not with the joins. As Algorithm 11 has as output

the set QA with different forms to interrelate the nucleuses selected, the user can

select from QA the expected joins and force the generation of an alternative query

Q and, hence, a different answer set A´=query(Q). If none of the queries Q in QA

satisfies the user, we compute more ways to interrelate the joins, using Algorithm

7.

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 58

4.3.2. Computing Alternative Resources

Suppose that the resources in A are not what the user expected. Or, in other words,

the user does not agree with the nucleuses. Algorithm 11 has as output the set Bo

with all resources that have matches with keywords. As feedback, the user can

select a subset B´⊆Bo. From B, we can execute an algorithm similar to Algorithm

11, but guaranteeing that the buckets in B belong to nucleuses selected.

Algorithm 12. Feedback Algorithm

Input: B, K, S, δ, π, ƒME, ƒMP, ƒMV, score,query,,m

Output: A, QA, Bo

1. Remove keywords(B) from K

2. Build the buckets set Bo, Bf from K and S by running Algorithm 2 with input K, S, ƒME,

ƒMP, ƒMV, 

3. Build the nucleus set N from Bf by running Algorithm 3 with input Bf

4. Select the best nucleus Ns from N by running Algorithm 6 with input K, N, δ, score

5. Adds the buckets in B to Ns

6. Create the tree set R from the entities in Ns by running Algorithm 7 with input

entities(Ns), π, δ and m

9. Create the set QA by adding the abstract query Q=(Ns,J) to QA,

7. for each tree T=(V,J) in R

8. Create the set A empty

9. Iterate for each abstract query Aq in QA computing A=query(Aq,S) until |A|>0

10. Return A, Bo, QA

4.4 Chapter Conclusion

In this chapter, we presented a solution for the Keyword Search problem over

graphs databases with schema. As we explained, the problem is NP-complete.

Hence, we introduced heuristics to find approximate solutions efficiently. The first

heuristic considers the order of appearance of the keywords, instead of treating the

keyword-based query as a “bag of words”, to select the relevant matches. To select

the relevant pieces of information, the strategy groups the matches at the level of

entities and properties, in buckets. Then, it groups the buckets, based on the entities,

in nucleuses. Using greedy heuristics, the translation algorithm selects the best set

of nucleuses that cover the keywords, are in the same connected component in the

graph induced by the schema and contain the minimal set of elements of the schema.

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 59

We also proposed a heuristic that, given the entities derived from the nucleus set

selected by the algorithm and the joins, finds at most m minimal Steiner trees. The

heuristic uses a variation of Floyd-Warshall algorithm to find several shortest-paths

between two nodes. Finally, the translation algorithm generates abstract queries,

using the nucleus set and the Steiner Trees. The abstract query is then compiled into

a structured query and executed in the specific database to generate answers. Since

the translation algorithm finds answers based on heuristics, we also proposed

feedback strategies to generate new answers, if the algorithm fails.

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

5
Implementation

This chapter presents the technical aspects of DANKE, a keyword search tool and

framework that implements the strategy proposed in Chapter 4. Section 5.1

illustrates the process of parsing a user text into a KwQ+ query. Section 5.2

summarizes the components and the architecture of the framework. Section 5.3

introduces the use of auxiliary tables to help finding the matches and building the

schema. Section 5.4 shows an algorithm to map the database schema into an abstract

schema. Section 5.5 details the function to find keyword matches and calculate the

score of a bucket or nucleus. Section 5.6 describes how to map an abstract query

into an SQL query or SPARQL query. Finally, Section 5.7 presents the interface.

5.1 User Query Parser

A user can specify the query through a text that follows a particular grammar. The

grammar is an LL(*) grammar (Parr, 2013), built using ANTLR1. Annex 9.1 details

the grammar.

The Boolean functions are fragments of texts that follow some specific rules

imposed by the grammar, where each rule defines a function. Table 4 shows some

examples of parsing text into Boolean functions.

Table 4. Examples of parsing text to Boolean functions.

Text Filter

greater than 100 Function that returns True if a literal is a number

greater than 100

< 100 Function that returns True if a literal is a number

less than 100

1 https://www.antlr.org/

https://en.wikipedia.org/wiki/LL_parser
DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 61

equal 18/07/2019 Function that returns True if a literal is a date

equal to July 18, 2019

> 1 and <5 Function that returns True if a literal is a number

between 1and 5

equal car or train Function that returns True if a literal is a string

equal to the string “car” or the string “train”

The Parser algorithm translates a user text into a KwQ+ query. The fragments

of text that are not recognized as Boolean function are considered keywords. A

keyword can be a word or phrase; a phrase is a word set between quotes. With the

ANTLR tool, we generated the grammar parser. The Parser first classifies the

original text as a sequence of keywords and Boolean functions, using the grammar.

Given the order of the elements in the sequence, it builds the KwQ+ query. Table 5

presents some examples about how the Parser algorithm works.

Table 5. Examples of parsing text into a KwQ+ query.

Text Sequence KwQ+

panama city “Panama” is a keyword;

“City” is a keyword

{”panama”; “city”}

"panama city" "panama city" is a keyword {”panama city”}

name equal Colón “name” is a keyword;

“equal Colón” is the Boolean function

f, where f returns True if a literal is a

string equal to the string “Colón”

{(”name”, f)}

population > 1 and <5 “population” is a keyword;

> 1 and <5 is the Boolean function f,

where f returns True if a literal is a

number between 1 and 5

{(“population”, f)}

country population >10000 ”country” is a keyword

“population” is a keyword

>10000 is the Boolean function f,

where f returns True if a literal is a

number greater than 10000

{”country”;

(“population”, f)}

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 62

5.2 Architecture

Figure 15 summarizes the component diagram of DANKE, whose main

components are Pre-processing, Database, Functions, Translate Algorithm,

FeedBack Algorithm and Query parser. The Pre-processing component executes

the algorithms that map the database schema into an abstract schema (Section 5.4)

and compute the Shortest Path Index (Section 4.2.1). The Database component

executes structured queries over the database. The Functions component contains

the functions that are required by the Translation Algorithm (Sections 5.5 and 5.6).

The Translation Algorithm component finds answer for a KwQ+ query (Section

4.2.6). The Feedback Algorithm component has two possibilities: the first one is a

new abstract query, and the second one is a bucket set (Section 4.3 explains both

cases). The Query Parser component parses a text into a KwQ+ query using a

specific grammar (Section 5.1).

Figure 15. DANKE Component Diagram.

The execution flow of DANKE goes as follows:

1. The pre-processing algorithms are executed.

2. The user submits a text or a feedback.

3. If the submit is a text:

a. The Query Parser parses the text into a KwQ+ query.

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 63

b. Given the functions, the pre-processing results and the KwQ+ query

produced by the Query Parser, the Translation Algorithm finds

answers, abstract queries and buckets for the KwQ+ query.

4. If the user submitted a feedback, the Feedback algorithm finds new

answers from the feedback:

a. If the feedback is an abstract query, the query function is used to find

new answers.

b. If the feedback is a bucket set, a version of the translation algorithm

is used to find new answers.

Figure 16 outlines the architecture of DANKE search tool. Danke search

tool has an implementation of functions ƒME, ƒMP, ƒMV, score, query and the function

that maps the database schema into an abstract schema, for each environment. The

next sections present the implementation of these functions for each environment.

Figure 16. DANKE Architecture.

5.3 Auxiliary Tables

For efficiency purposes, we build auxiliary tables, with metadata and data from the

database. The auxiliary tables help finding the matches and building the schema

faster; these tables are computed only once. Section 5.3.1 detail how to populate

the auxiliary tables for the relational environment and the RDF environment

respectively.

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 64

For Oracle SQL, Postgres, and Oracle RDF, we compute all tables, but for

the Jena TDB, we do not compute the VALUES table. For Oracle SQL, Postgres

and Oracle RDF, we materialize the auxiliary tables in the database only once. For

the Jena TDB, the auxiliary tables are built, in memory, every time the tool is

initialized.

The auxiliary tables are: ENTITIES table, PROPERTIES table, JOINS table,

and VALUES table. The ENTITIES table has three columns: name, labels, and

ranking. The PROPERTIES table has five columns: name, domain, labels, ranking,

and datatypes. The JOINS table has six columns: name, domain_entity,

domain_properties, range_entity, range_properties, and ranking. The VALUES

table has tree columns: value, property, and domain_entity.

5.3.1. Populating the Auxiliary Tables in the Relational Environment

The ENTITIES table contains data about all the tables in the database. The name

column is filled with the table names; and the labels and ranking columns are filled

with values assigned by someone with context knowledge.

The PROPERTIES table contains data about the properties in the database.

The name column is filled with the attributes’ names, the domain is filled with the

table name of the table to which the attribute belongs, the labels and ranking

columns are filled with values assigned by someone with context knowledge, and

the datatypes column is filled with the DATA_TYPE of the attribute.

The JOINS table contains the data about the foreign keys in the database. For

each foreign key definition

[CONSTRAINT [fk_name]] FOREIGN KEY [tbl_name] (col_name1,...,col_namek)

REFERENCES rtbl_name (rcol_name1,...,col_namek)

the JOINS table is filled with name, domain_entity, domain_properties,

range_entity and range_properties equal to fk_name, rtbl_name,

“rcol_name1,...,col_namek”, tbl_name and “col_name1, ...,col_namek”,

respectively. The ranking column is filled with values assigned by someone with

context knowledge.

The VALUES table contains the values of each attribute, with datatype

VARCHAR, in the database. The table is filled with the different values of each

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 65

attribute, the property contains the attribute name, and domain_entity column

contains the table name of the table to which the attribute belongs.

Example: Auxiliary Tables in the Relational Environment.

Consider a relational database with the metadata shown in Figure 7 and the data in

Table 6 and Table 7. Table 8, Table 9, Table 10 and Table 11 show examples of

the tables ENTITIES, PROPERTIES, JOINS and VALUES, respectively. Note that,

if we apply the algorithm to create the schema described in Section 5.4 to the

auxiliary tables, the result is the schema S for relational databases of Section 2.3.1.

Table 6. Country Table Data.

name population

Panama 4 162 618

Vatican City 1 000

Table 7. City Table Data.

name population of_country

Panama City 880 691 Panama

Colon 253 366 Panama

Table 8. Example of the ENTITIES Table for the Relational Environment.

name labels ranking

country Country 0.9

city City 0.8

Table 9. Example of the PROPERTIES Table for the Relational Environment.

name domain labels ranking datatypes

name country Name 0.9 VARCHAR

population country Population 0.9 NUMBER

name city Name 0.8 VARCHAR

population city Population 0.8 NUMBER

Table 10. Example of the JOINS Table for the Relational Environment.

name
domain_

entity
domain_properties

range_

entity
range_properties ranking

city_country country name city of_country 0.9

Table 11 Example of the VALUES Table for the Relational Environment

value domain_entity property

Panama country name

Vatican City country name

Panama City city name

Colon city name

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 66

5.3.2. Populating the Auxiliary Tables in the RDF Environment

The auxiliary tables are filled using SPARQL queries, where the ENTITIES table

contains the classes, the PROPERTIES table contains the datatype properties, the

JOINS table contains the object properties, and the VALUES Table contains the

distinct literals of type STRING.

ENTITIES Table

INSERT into ENTITIES (name, labels, ranking)

 select ?class ?literal ?ranking

 where

 { ?class rdf:type rdfs:Class .

 ?class rdfs:label ?literal.

 ?class danke:ranking ?ranking.

 }

PROPERTIES Table

INSERT into PROPERTIES (name, domain, labels, datatype, ranking)

 select distinct ?property ?class ?literal ?datatype ?ranking

 where

 {

 ?property rdf:type owl:DatatypeProperty.

 ?property rdfs:label ?literal.

 ?property rdfs:domain ?class.

 ?property rdfs:range ?datatype.

 ?property danke:ranking ?datatype.

 }

JOINS Table

INSERT into JOINS (name, domain_entiy, range_entity, ranking)

 select distinct ?o_property ?d_class ?r_class ?ranking

 where

 {

 ?o_property rdf:type owl:ObjectProperty.

 ?o_property rdfs:domain ?d_class.

 ?o_property rdfs:range ? r_class.

 ?property danke:ranking ?datatype.

 }

VALUES Table

INSERT into VALUES (value, domain_entity, domain_property)

 select distinct ?literal ?property ?class

 where

 {

 ?property rdf:type owl:DatatypeProperty.

 ?property rdfs:domain ?class

 ?r ?property ?literal.

 filter(isLiteral(?literal) AND xsd:String(?literal))

 }

 group by ?class ?property ?literal

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 67

Example: Auxiliary Tables in the RDF Environment.

Consider an RDF dataset with the RDF schema shown in Figure 6and the triples

shown in Figure 17. Table 12, Table 13, Table 14 and Table 15 show examples of

the tables ENTITIES, PROPERTIES, JOINS and VALUES, respectively. Note that,

if we apply the algorithm to create the schema of Section 5.4 to the auxiliary tables,

the result is the schema S for RDF dataset of Section 2.3.1.

:panama rdf:type :country;

 :name “Panama”;

 :population “4 162 618”.

:vatican rdf:type :country;

 :name “Vatican City”;

 :population “1 000”.

:panama_city rdf:type :city;

 :name “Panama City”;

 :population “880 691”;

 :of_country :panama.

:colon rdf:type :city;

 :name “Colon”;

 :population “253 366”;

 :of_country :panama.

Figure 17. RDF Data.

Table 12. Example of the ENTITIES Table for the RDF Environment.

name labels ranking

:country Country 0.9

:city City 0.8

Table 13 Example of the PROPERTIES Table for the RDF Environment.

name domain labels ranking datatypes

:name :country Name 0.9 VARCHAR

:population :country Population 0.9 NUMBER

:name :city Name 0.8 VARCHAR

:population :city Population 0.8 NUMBER

Table 14. Example of the JOINS Table for the RDF Environment.

name
domain_

entity
domain_properties

range_

entity
range_properties ranking

:of_country :country null :city null 0.9

Table 15. Example of the VALUES Table for the RDF Environment.

value domain_entity property

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 68

Panama :country :name

Vatican City :country :name

Panama City :city :name

Colon :city :name

5.4 Map Schema

The algorithm that maps a database schema into an abstract schema depends on the

auxiliary tables. Algorithm 13 outlines that process. It has as input the auxiliary

tables ENTITIES, PROPERTIES and JOINS and as output the abstract schema S.

The algorithm creates an entity for each tuple in the ENTITIES table, a

property for each tuple in the PROPERTIES table and a join for each tuple in the

JOINS table. The function ɱ maps the elements of the abstract schema with the

column name in the auxiliary tables.

Algorithm 13. Map Schema

Input: ENTITIES, PROPERTIES, JOINS

Output: S

1. Create the entity set E as empty

2. Create the property set P as empty

3. Create the join set J as empty

4. Create the map ɱ as empty

5. for each tuple t in ENTITIES

6. Create the entity e=(ranking(t), labels(t))

7. Add e to E

8. Add (e, name(t)) to ɱ

9. for each tuple t in P

10. Find the tuple (e,s) in ɱ such that s is equal to domain(t)

11. Create the property p=(ranking(t),e, labels(t),datatypes(t))

12. Add p to P

13. Add (p, n) to ɱ, where n is concat(name(t),’+’, domain(t))

14. for each tuple t in J

15. Find the tuple (ed,sd) in ɱ such that sd is equal to entity_domain(t)

16. Find the tuple (er,sr) in ɱ such that sr is equal to entity_range(t)

17. Create the join j=(ranking(t), ed, ee)

18. Add j to J

19. Add (j, name(t)) to ɱ

20. Create S as the tuple (E, P, J, ɱ)

21. Return S

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 69

Give a property p and the abstract schema S, the property(ɱ(S)(p)) is defined

as split(ɱ(S)(p),’+’).first(), and domain(ɱ(S)(p)) is defined as

split(ɱ(S)(p),’+’).last(), where the split function splits a string into an array of

strings using the specified separator, and the first and last functions return the first

and the last elements of the array, respectively.

5.5 Matches and Score

We index the auxiliary tables to search the matches and to calculate the score faster.

We use Oracle Text2 to index the auxiliary tables for Oracle environments. We use

pg_trgm3
 module to index the auxiliary tables for the Postgres environment. Finally

we use Lucene4 to create an index over the rdf:label and the owl:DatatypeProperty

in Jena TDB environment.

5.5.1. Find Matches

This section outlines the implementations of the functions ƒME, ƒMP andƒMV.

Given a keyword k, a number , and a schema S, ƒME produces an entity set

me. The first step is to create the query ƒME_query, which depends on the

environment, for k and . Then, ƒME_query is executed. Finally, ƒME fills the set me

with all e such that (e, s)ɱ(S) and sR.

Given a keyword k, a number , and a schema S, ƒMP produces a property set

mp. The first step is to create the query ƒMP_query, which depends on the

environment, for k and . Then, ƒMP_query is executed. Finally, ƒMP fill the set mp

with all p such that (p, s)ɱ(S) and sR.

Given a keyword k, a number , and a schema S, ƒMV produces a property set

mv. The first step is to create the query ƒMV_query, which depends on the

environment, for k and . Then, ƒMV_query is executed. Finally ,ƒMV fills the set mv

with all p such that (p, s)ɱ(S) and sR.

Oracle SQL and Oracle RDF

2 https://docs.oracle.com/cd/B28359_01/text.111/b28303/quicktour.htm#g1011793
3 https://www.postgresql.org/docs/9.6/pgtrgm.html
4 https://jena.apache.org/documentation/query/text-query.html

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 70

As in Oracle, RDF databases and SQL databases coexist, the queries ƒME_query,

ƒMP_query, ƒMV_query are the same.

The ƒME_query for a keyword k and  is:

SELECT DISTINCT name FROM ENTITIES WHERE CONTAINS(labels, fuzzy(k), 1)>

The ƒMP_query for a keyword k and  is:

SELECT DISTINCT name||’+’||domain FROM PROPERTIES WHERE

CONTAINS(labels, fuzzy(k), 1)>

The ƒMV_query for a keyword k and  is:

SELECT DISTINCT property||’+’||domain_entity FROM VALUES WHERE

CONTAINS(value, fuzzy(k), 1)>

The function fuzzy it is used to find fuzzy matches.

Postgres

The ƒME_query for a keyword k and  is:

SELECT DISTINCT name FROM ENTITIES WHERE similarity(labels,k)>

The ƒMP_query for a keyword k and  is:

SELECT DISTINCT name||’+’||domain FROM PROPERTIES WHERE WHERE

similarity(labels,k)>

The ƒMV_query for a keyword k and  is:

SELECT DISTINCT property||’+’||domain_entity FROM VALUES WHERE

similarity(value,k)>

Jena TDB

The ƒME_query for a keyword k and  is:

SELECT DISTINCT ?class WHERE{

 ?class rdf:type rdfs:Class.

 (?class ?score ?v) text:query (rdf:label ‘k~’).

 filter (?score>)

}

The ƒMP_query for a keyword k and  is:

SELECT DISTINCT ((concat(?property,"+",?class) as ?s)

WHERE{

 ?property rdf:type owl:DatatypeProperty.

 ?property rdfs:domain ?class.

 (?class ?score ?v) text:query (rdf:label ‘k~’).

 filter (?score>)

}

The ƒMV_query for a keyword k and  is:

SELECT DISTINCT ((concat(?property,"+",?class) as ?s)

WHERE{

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 71

 ?property rdf:type owl:DatatypeProperty.

 ?property rdfs:domain ?class.

 (?class ?score ?v) text:query (‘k~’).

 ?i ?property ?v.

 filter (?score>)

}

5.5.2. Compute Score

This section outlines the implementations of function score.

The score of an entity bucket be is defined by the query be_score, which

depends on the environment.

The score of a property bucket bp is defined by the query bp_score, which

depends on the environment.

The score of a value bucket bv is defined by the query bv_score, which

depends on the environment.

The score of a nucleus n=(be,BP,BV) given a KwQ+ query K is:

score(n, K) = [ × 𝑠𝑐𝑜𝑟𝑒(𝑏𝑒)] + [ ×
∑ 𝑠𝑐𝑜𝑟𝑒(𝑏)𝑏 𝐵𝑃

|𝐵𝑝|
] +

[𝛾 ×
∑ 𝑠𝑐𝑜𝑟𝑒(𝑏,)𝑏 𝐵𝑉

|𝐵𝑣|
] + [(1 −  −  − 𝛾) ×

|𝐾𝐸𝑌𝑊𝑂𝑅𝐷𝑆(𝑛)|

|𝐾|
]

where , , γ(0,1] are such that 0 <  +  + γ  1, and weight between the score

of the entity bucket, the score of the property buckets, the score of the value bucket

set and the numbers of keywords that the nucleus covers. These coefficients are

experimentally set.

Oracle SQL and Oracle RDF

Since, in Oracle databases, RDF databases and SQL databases coexist, the queries

be_squery, bp_squery, bv_squery are the same.

The be_squery for an entity bucket be=(e, K) in the schema S, where K={k1,..

,km}, is:

SELECT score(1) as score FROM ENTITIES WHERE

name=ɱ(S)(e) AND CONTAINS(labels, fuzzy(k1 accum k2 … accum km), 1)>0

ORDER BY score DESC

FETCH FIRST 1 ROWS ONLY

The bp_squery for a property bucket bp=(p,K,f) in the schema S, where

K={k1,.. ,km}, is:

SELECT score(1) as score FROM PROPERTIES WHERE

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 72

 name=property(ɱ(S)(p)) AND

 domain=domain(ɱ(S)(p)) AND

 CONTAINS(labels, fuzzy(k1 accum k2 … accum km), 1)>0

ORDER BY score DESC

FETCH FIRST 1 ROWS ONLY

The bv_squery for a value bucket bv=(p, K) in the schema S, where K={k1,..

,km}, is:

SELECT score(1) as score FROM VALUES WHERE

 property=property(ɱ(S)(p)) AND

 domain_entity=domain(ɱ(S)(p)) AND

 CONTAINS(value, fuzzy(k1 accum k2 … accum km), 1)>0

ORDER BY score DESC

FETCH FIRST 1 ROWS ONLY

The ACCUM operator gives a cumulative score based on how many query

terms are found (and how frequently).

Postgres

The be_squery for an entity bucket be=(e, K) in the schema S, where K={k1,.. ,km},

is:

SELECT similarity(labels, 'k1 k2 … km ') as score FROM ENTITIES WHERE

name=ɱ(S)(e) AND labels % 'k1 k2 … km '

ORDER BY score DESC

FETCH FIRST 1 ROWS ONLY

The bp_squery for a property bucket bp=(p,K,f) in the schema S, where

K={k1,.. ,km}, is:

SELECT similarity(labels, 'k1 k2 … km ') as score FROM PROPERTIES WHERE

 name=property(ɱ(S)(p)) AND

 domain=domain(ɱ(S)(p)) AND

 labels % 'k1 k2 … km '

ORDER BY score DESC

FETCH FIRST 1 ROWS ONLY

The bv_squery for a value bucket bv=(p, K) in the schema S, where K={k1,..

,km}, is:

SELECT similarity(labels, 'k1 k2 … km ') as score FROM VALUES WHERE

 porperty=property(ɱ(S)(p)) AND

 domain_entity=domain(ɱ(S)(p)) AND

 values % 'k1 k2 … km '

ORDER BY score DESC

FETCH FIRST 1 ROWS ONLY

Jena TDB

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 73

The be_squery for an entity bucket be=(e, K) in the schema S, where K={k1,.. ,km},

is:

SELECT ?score WHERE{

 (ɱ(S)(e) ?score ?v) text:query (rdf:label ‘k1~ … km~’).

 filter (?score>0)

}

ORDER BY ?score DESC LIMIT 1

The bp_squery for a property bucket bp=(p,K,f) in the schema S, where

K={k1,.. ,km}, is:

SELECT ?score WHERE{

 (property(ɱ(S)(p)) ?score ?v) text:query (rdf:label ‘k1~ … km~’).

 filter (?score>0)

}

ORDER BY ?score DESC LIMIT 1

The bv_squery for a value bucket bv=(p, K) in the schema S, where K={k1,..

,km}, is:

SELECT ?score WHERE{

 ?i property(ɱ(S)(p)) ?v.

 (?i ?score ?v) text:query (‘k1~ … km~’).

 filter (?score>0)

}

ORDER BY ?score DESC LIMIT 1

5.6 Compiling Abstract Query

5.6.1. Relational Environment

As already mentioned, the function query, given an abstract query aq=(N,J) and a

schema S, compiles and executes a structured query. For the relational environment,

the function query compiles the query q as follows:

1. ∀eentities(N), the SELECT clause of q contains the primary keys of

ɱ(S)(e).

2. ∀nN ∀b[Bp(n)∪Bv(n)], with p=property(b), the SELECT clause of q

contains the property(ɱ(S)(p)).

3. ∀jJ, the FROM clause of q contains ɱ(domain(j)) and ɱ(range(j)).

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 74

4. ∀jJ, the WHERE clause contains the filters defined for the foreign key

ɱ(j), that is, the tuple (name,domain_entity, domain_properties,

range_entity, and range_properties) in JOINS table where name=ɱ(j).

5. ∀nN ∀bBP(n), with p=property(b) such that b has a filter f, the WHERE

clause of q filters the property(ɱ(p)) to guarantee that f is satisfied

6. ∀nN ∀bBV(n), with p=property(b), the WHERE clause of q filters the

property(ɱ(p)) according to the keywords(b).

Section 5.6.2 exemplifies these steps for Oracle SQL and Postgres.

5.6.2. Example for the Relational Environment

Consider the database and the auxiliary tables of Section 5.3.1, the schema S for

relational databases of Section 2.3.1, and the abstract query aq=(N, J), where

 N={n1,n2}

 n1=(be1, {bp1}, {}), be1=(e1,{“country”}), bp1=(p3, {“population”},f1),

where f1 returns true if a literal is a number greater than 1 000 000

n2=(be2, {}, {bv2}), be1=(e1,{“city”}), bv2=(p2, {“colon”})

J={j1}

The steps described in Section 5.6.1 produces the query q as follow.

Oracle SQL

1. To add to the SELECT clause the primary keys of tables ɱ(S)(e1) and

ɱ(S)(e1) that is the tables country and city.

q = SELECT city.name, country.name FROM WHERE

2. To add to the SELECT clause of q the property(ɱ(S)(p3)) and

property(ɱ(S)(p2)).

q = SELECT country.name, city.name, country.population

 FROM WHERE

Note that property(ɱ(S)(p2)) is not added because it was already added in

the step 1.

3. To add to the FROM clause the tables ɱ(domain(j1)) and ɱ(range(j2)), that

is, the tables country and city.

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 75

q = SELECT country.name, city.name, country.population

 FROM country, city WHERE

4. To add to the WHERE clause the filters defined for the foreign key ɱ(j1),

that is, the tuple (city_country, country, name, city, of_country).

q = SELECT country.name, city.name, country.population

 FROM country, city

 WHERE country.name=city.of_country

5. To add to the WHERE clause the filter for property(ɱ(p3)) to guarantee that

f1 is satisfied.

q = SELECT country.name, city.name, country.population

 FROM country, city

 WHERE country.name=city.of_country AND

 country.population > 1000000

6. To add to the WHERE clause the filter for property(ɱ(p1)) with the value

“colon”.

q = SELECT country.name, city.name, country.population

 FROM country, city

 WHERE country.name=city.of_country AND

 country.population > 1000000 AND

 contains(city.name, fuzzy(‘colon’),1)>0

Postgres

Steps from 1 to 5 are equivalent to Oracle SQL:

q = SELECT country.name, city.name, country.population

 FROM country, city

 WHERE country.name=city.of_country AND

 country.population > 1000000

6. To add to the WHERE clause the filter for property(ɱ(p1)) with the value

“colon”.

q = SELECT country.name, city.name, country.population

 FROM country, city

 WHERE country.name=city.of_country AND

 country.population > 1000000 AND

 city.name % ‘colon’

5.6.3. RDF Environment

For the RDF environment, the function query compiles the query q as follows:

1. ∀eentities(N), the SELECT clause of q contains ?ve and the WHERE clause

contains the triple (?ve, rdf:type, ɱ(e)).

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 76

2. ∀nN ∀b[Bp(n)∪Bv(n)], with p=proprety(b), the SELECT clause of q

contains ?vp and the WHERE clause contains the triple (?ve,

property(ɱ(p)), ?vp). Note that ?ve is the variable associated with

domain(p) in step 1.

3. ∀jJ, the WHERE clause of q contains the triple (?ve1, ɱ(j), ?ve2). The

variables ?ve1 and ?ve2 are associated with domain(j) and range(j),

respectively.

4. ∀nN ∀bBP(n), with p=property(b) such that b has a filter f, the WHERE

clause of q filters the variable ?vp, associated with p in step 2, guaranteeing

that f is satisfied.

5. ∀nN ∀bBV(n), with p=property(b), the WHERE clause of q filters the

variable ?vp, associated with p in step 2, according to keywords(b).

Section 5.6.3 exemplifies these steps for Oracle RDF and Jena TDB

databases.

5.6.4. Example for the RDF Environment

Consider the dataset and the auxiliary tables of Section 5.3.2, the schema S for RDF

dataset of Section 2.3.1, and the abstract query aq=(N, J), where

 N={n1,n2},

 n1=(be1, {bp1}, {}), be1=(e1,{“country”}), bp1=(p3, {“population”},f1),

where f1 returns true if a literal is a number greater than 1 000 000

n2=(be2, {}, {bv2}), be1=(e1,{“city”}), bv2=(p2, {“colon”})

J={j1}

The steps described in Section 5.6.3 produces the query q as follow.

Oracle RDF

1. To add to the SELECT clause the variables ?vcountry and ?vcity, and to add to

the WHERE clause triples with (?vcountry, rdf:type, :country) and (?vcity,

rdf:type, :city).

q = SELECT ?vcountry ?vcity

 WHERE{

 ?vcountry rdf:type :city.

 ?vcity rdf:type :country.

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 77

 }

2. To add to the SELECT clause ?vpopulation and ?vname, and to add to the

WHERE clause the triples (?vcountry, :population, ?vpopulation) and (?vcity,

:name, ?vname).

q = SELECT ?vcountry ?vcity ?vpopulation ?vname

 WHERE{

 ?vcountry rdf:type :city.

 ?vcity rdf:type :country.

 ?vcountry :population ?vpopulation.

 ?vcity :name ?vname.

 }

3. To add to the WHERE clause of q the triple (?vcountry, :of_country, ?vcity).

q = SELECT ?vcountry ?vcity ?vpopulation ?vname

 WHERE{

 ?vcountry rdf:type :city.

 ?vcity rdf:type :country.

 ?vcountry :population ?vpopulation.

 ?vcity :name ?vname.

?vcountry :of_country ?vcity.

 }

4. To add to the WHERE clause the filter for ?vpopulation to guarantee that f1 is

satisfied.

q = SELECT ?vcountry ?vcity ?vpopulation ?vname

 WHERE{

 ?vcountry rdf:type :city.

 ?vcity rdf:type :country.

 ?vcountry :population ?vpopulation.

 ?vcity :name ?vname.

?vcountry :of_country ?vcity.

filter (?vpopulation>1000000)

 }

5. To add to the WHERE clause the filter to the ?vname with the value “colon”.

q = SELECT ?vcountry ?vcity ?vpopulation ?vname

 WHERE{

 ?vcountry rdf:type :city.

 ?vcity rdf:type :country.

 ?vcountry :population ?vpopulation.

 ?vcity :name ?vname.

?vcountry :of_country ?vcity.

filter (?vpopulation>1000000)

filter (oratext:contains(?vname, fuzzy(‘colon’),1)>0)

 }

Jena TDB

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 78

Steps from 1 to 4 are equivalent to Oracle RDF:

q = SELECT ?vcountry ?vcity ?vpopulation ?vname

 WHERE{

 ?vcountry rdf:type :city.

 ?vcity rdf:type :country.

 ?vcountry :population ?vpopulation.

 ?vcity :name ?vname.

?vcountry :of_country ?vcity.

filter (?vpopulation>1000000)

 }

5. To add to the WHERE clause the filter for the ?vname with the value “colon”.

q = SELECT ?vcountry ?vcity ?vpopulation ?vname

 WHERE{

 ?vcountry rdf:type :city.

 ?vcity rdf:type :country.

 ?vcountry :population ?vpopulation.

 ?vcity :name ?vname.

?vcountry :of_country ?vcity.

filter (?vpopulation>1000000).

(?vcity ?score ?vname) text:query (‘colon~’).

 }

5.7 User Interface

The main requirements of a keyword search interface are a text box, where the user

types keywords, and a layout area to present the answers to the user. The user

interface offers an auto-completion feature to help users formulate a keyword-based

query, as in Figure 18. The interface suggests new keywords based on the previous

keywords, the schema vocabulary, and the labels.

Figure 18. Example of auto-completion.

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 79

Since an answer A for a keyword-based query K over an RDF dataset T is

formally a subset of T, it would be consistent to present A as a set of triples.

However, this option proved to be inconvenient for the users, which are more

familiar with tabular data, as in relational systems. We then implemented a user

interface that presents the results of K by combining a table (Figure 19) with the

Steiner tree underlying the SQL or SPARQL query, which is exhibited by clicking

on the graph button, as in Figure 20. Note that there is an indication of the Page and

a Next button so that the user can see all the results.

Another feature of the presentation is to show to the user the entities that

compose the answers, to allow her to see the available properties of these entities,

and to select those that she wants to include in the table. Figure 21 shows an

example of this feature, in which a user wants to include the population of the

retrieved country.

Figure 19. Example of tabular answer.

Figure 20. Example of query graph.

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 80

Figure 21. Property selection.

Besides the keyword search engine, we also allow the user to navigate to an

instance by clicking on the links and see its data (Figure 22) and its relations with

other instances (Figure 23). The user may continue navigating through other

instances to discover more data, as shown in Figure 23.

Figure 22. Example of instance information.

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 81

Figure 23. Example of instance relations.

Figure 24. Example of navigation.

As we explained in Section 4.3, the user can choose other elements of the

schema to find new answers, by clicking on the refine button, as in Figure 25, or he

can choose another graph, if one exists, as in Figure 26.

Figure 25. Example of feedback with other resources.

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 82

Figure 26. Example of feedback with multiple Steiner trees.

5.8 Chapter Conclusion

In this chapter, we presented the architecture, the implementation details and the

interface of the DANKE tool. The architecture reflects the steps of the keyword

search process, as defined in Chapter 4. Also, we discussed, for each database

management system, how to improve the performance of the algorithm, how to

build the schema, and how to construct the queries that will be executed. Finally,

the interface permits the user to submit queries, analyze answers, give a feedback

and navigate through the instances of the graph.

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

6
Evaluation

6.1 Setup

To evaluate the Translation algorithm, we ran Coffman’s benchmark (Coffman &

Weaver, 2010) for Mondial and IMDb. We compared and evaluated the algorithm

using Oracle, that is, using the Oracle SQL environment and the Oracle RDF

environment. The Mondial dataset is available at https://www.dbis.informatik.uni-

goettingen.de/Mondial/ and the IMDb dataset is available at

https://sites.google.com/site/ontopiswc13/ home/imdb-mo. The versions of IMDb

and Mondial used are different from the versions used in Coffman’s benchmark.

Continuing our experiments, we used 25 queries from QALD-25 (adapted to

keyword search) to evaluate the Translation algorithm over the MusicBrainz

database, available at

https://musicbrainz.org/doc/MusicBrainz_Database/Download.

Table 16 shows basic statistics about the RDF datasets and relational

databases used in the experiments.

Table 16. Statistics – Mondial and IMDb.

RDF Dataset
#Triples

Mondial IMDb

Class declarations 4 11

Object property declarations 62 11

Datatype prop. declarations 130 25

subClassOf axioms - -

Indexed properties 71 7

Indexed prop. instances 11.094 12.609.418

Class instances 43.869 70.520.744

Object property instances 63.652 204.917.673

Total number of triples 235.387 382.295.213

Relational Database
#Objects

Mondial IMDb MusicBrainz

Number of Relations 40 11 15

Number of Attributes 187 20 31

Number of Tuples 40,247 70.520.722 51.965.280

Size (in GB) 0.11 60.63 16,6

5 https://github.com/ag-sc/QALD

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 84

All experiments used the RESTful Web service that the DANKE tool

provides, developed in Java. The Web service ran on a desktop machine with OS

Windows 10 Pro, a quad-core processor Intel(R) Core(TM) i5-7400 CPU @

3.00GHz, 16 GB of RAM. The relational databases and RDF datasets were stored

in Oracle 12c, running on a quad-core machine with processor Intel(R) Core(TM)

i5 CPU 660 @ 3.33GHz, 7GB of RAM, and 4096 KB of Cache size, and configured

with a PGA size of 324 MB and an SGA size of 612 MB with 148 MB of cache

size and 296 MB of buffer cache.

Table 17 shows the time (in minutes) taken by the pre-processing task, to

build and index the auxiliary tables and compute the shortest path index.

Table 17 Time taken by the pre-processing tasks

Tasks
Time (in minutes)

Mondial IMDb MusicBrainz

Auxiliary tables
Relational 0.3 38 32

RDF 0.3 40 -

Shortest path index 0.06 0.05 0.7

6.2 Coffman’s benchmark

The results obtained by the Translation algorithm were exactly the same in both the

RDF and the relational environments, as expected, since the construction process

of the abstract query, matches, and score, was the same in both cases. For the

experiments, we measured the query build time – the time taken by the translation

algorithm until the construction of the SQL or SPARQL query, and the total elapsed

time – the time from the submission of the query until the display of the first 75

results. We also included the individual Mean Average Precision (MAP) score for

each query.

6.2.1. Experiments with Mondial

We tested the tool against relational and RDF versions of the Mondial dataset

using the list of 50 keyword-based queries defined in Coffman’s benchmark

(Coffman & Weaver, 2010). As the dataset that we used for the experiments is not

the same used in Coffman’s benchmark, two of the queries, Query 7 and Query

14, contain keywords that do not occur in the database, and then the number of

valid queries is 48.

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 85

Table 18 shows the test results. To summarize, the tool correctly answered 33

queries, nearly 69% of the 48 valid queries in Coffman’s benchmark for the version

of Mondial adopted. Both versions reached the same results. A brief analysis of the

correctness of the results follows:

Queries 1-5 – countries: All queries were correctly answered.

Queries 6-10 – cities: Query 7 returned no answer since the version of

Mondial adopted does not have a city called “Sonsonate”. The other queries are

correctly answered.

Queries 11-15 – geographical: Query 14 returned no answer since the version

of Mondial adopted had no desert called “Asauad”. Query 12 returned the country

“Niger”. With the feedback algorithm, Query 12 returns the river “Niger” that is the

expected answer.

Queries 16-20 – organization: All queries returned answers, covering all

keywords; some keywords were not listed in class Organization, then the results did

not coincide with the expected answers of the benchmark. We considered that all

queries were correctly answered.

Queries 21-25 – border between countries: The keywords matched the labels

of two instances of class Country, but the keywords were not sufficient to infer that

the question is about the borders between countries and, thus, were not correctly

answered.

Queries 26-35 – geopolitical or demographic information: The expected

answer of Query 35 was obtained using a feedback mechanism. We considered that

all queries were correctly answered.

Queries 36-45 – member organizations two countries belong to: The expected

answer is the list of organizations that the countries belong to; however, the tool did

not identify the IS_MEMBER class when generating the nucleuses.

Queries 46-50 – Miscellaneous: The expected answer of Query 40 and Query

50 were obtained using a feedback mechanism. We considered that all queries were

correctly answered.

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 86

Table 18 Mondial Results

Query

Number

Keywords SQL SPARQL

Build Time Total time MAP Build Time Total time MAP

1 Thailand 0.036 0.065 1,0 0.049 0.555 1,0

2 Netherlands 0.035 0.066 1,0 0.023 0.318 1,0

3 Georgia 0.039 0.065 1,0 0.043 0.354 1,0

4 country China 0.043 0.067 1,0 0.031 0.321 1,0

5 Bangladesh 0.024 0.051 1,0 0.032 0.326 1,0

6 Alexandria 0.056 0.201 1,0 0.030 0.580 1,0

7 sonsonate The version of Mondial the keyword “Sonsonate” does not exist

8 Xiaogan 0.064 0.099 1,0 0.030 0.320 1,0

9 city Glendale 0.044 0.074 1,0 0.026 0.532 1,0

10 city Granada 0.037 0.059 1,0 0.030 0.458 1,0

11 Lake Kariba 0.032 0.155 1,0 0.035 0.311 1,0

12 Niger 0.117 0.240 1,0 0.047 0.486 1,0

13 Arabian Sea 0.027 0.138 1,0 0.012 0.355 1,0

14 Asauad The version of Mondial the keyword “Asauad” does not exist

15 Sardegna 0.046 0.203 1,0 0.045 0.333 1,0

16 Arab Cooperation Council 0.149 0.516 1,0 0.121 1.742 1,0

17 world labor 0.109 0.279 1,0 0.083 1.354 1,0

18 Islamic Conference 0.154 0.251 1,0 0.079 1.311 1,0

19 30 group 0.021 0.065 1,0 0.014 0.328 1,0

20 Caribbean economic 0.085 0.124 1,0 0.049 1.099 1,0

21 slovakia hungary - - 0 - - 0

22 mongolia china - - 0 - - 0

23 niger algeria - - 0 - - 0

24 kuwait saudi arabia - - 0 - - 0

25 lebanon syria - - 0 - - 0

26 Cameroon economy 0.075 0.106 1,0 0.042 0.872 1,0

27 Nigeria gdp 0.066 0.115 1,0 0.044 1.278 1,0

28 Mongolia Republic 0.091 0.132 1,0 0.090 0.701 1,0

29 Kiribati politics 0.043 0.068 1,0 0.042 0.831 1,0

30 Poland language 0.069 0.106 1,0 0.027 0.809 1,0

31 Spain Galician 0.103 0.219 1,0 0.055 0.974 1,0

32 Uzbekistan eastern orthodox 0.066 0.312 1,0 0.068 1.982 1,0

33 Haiti religion 0.094 0.131 1,0 0.040 0.923 1,0

34 Suriname ethnic group 0.089 0.121 1,0 0.053 1.091 1,0

35 Slovakia German 0.064 0.101 1,0 0.056 0.935 1,0

36 poland cape verde
organization

- - 0 - - 0

37 saint kitts cambodia - - 0 - - 0

38 marshall islands grenadines
organization

- - 0 - - 0

39 czech republic cote divoire
organization

- - 0 - - 0

40 panama oman - - 0 - - 0

41 iceland mali - - 0 - - 0

42 guyana sierra leone - - 0 - - 0

43 mauritius india - - 0 - - 0

44 vanuatu afghanistan - - 0 - - 0

45 libya australia - - 0 - - 0

46 Hutu Africa 0.053 0.263 1,0 0.041 1.044 1,0

47 Serb Europe 0.062 0.148 1,0 0.052 0.980 1,0

48 Uzbek Asia 0.066 0.105 1,0 0.059 0.983 1,0

49 Rheine Germany 0.040 0.093 1,0 0.046 0.948 1,0

50 Egypt Nile 0.072 0.122 1,0 0.064 1.046 1,0

Figure 27 shows, on the Y-axis, the query build time and the total elapsed

time, in seconds, of each query in Coffman’s benchmark, numbered 1 to 50 on the

X-axis. Note that, for each keyword-based query: the SPARQL total elapsed time

(shown as a dot) was always much larger than the SQL total elapsed time (shown

as a cross), and the SPARQL and the SQL query build times (respectively shown

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 87

as squares and triangles) were nearly the same (most squares are on top of the

triangles). Section 6.3 discusses these points for both experiments.

Figure 27 Mondial - Build Time and Total Elapsed Time

6.2.2. Experiments with IMDb

As we mentioned before, we tested the tool against a full and more recent version

of IMDb, which we refer to as Full IMDb to differ it from the Restricted IMDb

version used in Coffman’s benchmark. Contrasting with the Restricted IMDb, the

Full IMDb features a much more complex conceptual schema (see Table 16).

Furthermore, while the Restricted IMDb has data only about movies, the Full IMDb

has data about movies, series, episodes, video games, etc. We considered these

differences when comparing the result of our tool with that of the benchmark.

In order to reduce ambiguity when using the Full IMDb, as compared with

the Restricted IMDb, and consequently, to improve processing time, we surrounded

most keywords with quotes. For instance, consider the query {denzel, washington}.

If we treat the keywords separately, we find that {denzel} has 670 data matches,

while {washington} has 23,720. Indeed, “washington” is a very ambiguous

keyword, since it matches the name of an actor, movie, TV series, city, state, etc.

Hence, if we treat the query as “denzel OR washington” we have a total of 23,851

data matches. However, if we treat the query as “denzel AND washington”, we have

only 539 data matches. For example, Table 19 presents the SQL queries and the

total elapsed times (in seconds) to compute the value score for class movie_info

and property info; we note that the total time to create an abstract query was, on

average, 30 times faster with quotes.

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 88

Table 19 Data Match Scores

Query Ela

p

with

quote

s

SELECT score(1) as score FROM VALUES

WHERE domain = 'movie_info' and property = 'info' and

contains (value, 'denzel washington', 1) > 0

ORDER BY score DESC FETCH FIRST 1 ROWS ONLY

0.1

4

no

quote

s

SELECT score(1) as score FROM VALUES

WHERE domain = 'movie_info' and property = 'info' and

 contains (value, 'denzel accum washington', 0) > 0)

ORDER BY score DESC FETCH FIRST 1 ROWS ONLY

5.0

4

Table 20 shows the test results. To summarize, the tool correctly answered 45

queries, nearly 90% of the 50 queries in Coffman’s benchmark for IMDb. We note

that the use of quotes only improved the query build time and did not change the

final results.

A brief analysis of the correctness of the results follows:

Queries 1-20 – <actors or movies>: relevant results contain a single tuple of

the specified individual or film. For Query 13, the tool returned the actor named

Casablanca, not the movie. With the feedback algorithm, Query 13 returned the

movie, that is the expected answer. We considered that all queries were correctly

answered.

Queries 21-30 – title+<character>: For Queries 22, 23, 28, the tool returned

a wrong answer since the name of the character is also the name of some title; the

expected results of those queries were obtained using a feedback mechanism. We

considered that all queries were correctly answered.

Queries 31-35 – title+<quote>: All queries were correctly answered.

Queries 36, 44, 46-49 – <actor>+<character, director or writer>: Queries

36 and 44 were correctly answered. For queries from 46 to 49 the tool returned a

wrong answer because the relation is between two instances of the same class.

Queries 37, 41 – <actor>+<year>. For Query 41, the tool returned a wrong

answer since the name of the actress is also the name of a title; the expected results

of this query were obtained using a feedback mechanism. We considered that all

queries were correctly answered.

Queries 38-40 – <actor>+<film>: relevant results must denote the character

that an actor plays in a film. For queries 38 and 39, the tool returned a wrong answer

since the name of the actor is also the name of some character; the expected results

of this query were obtained using a feedback mechanism. We considered that all

queries were correctly answered.

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 89

Queries 42, 43, 45 – name+<character>: For all queries, the tool returned a

wrong answer since it matched the keyword “name” with property name from class

Character; the expected results of this query were obtained using a feedback

mechanism. We considered that all queries were correctly answered.

Queries 50 – name+<character>: The tool returned a wrong answer since

two keywords match instances from the same class.

Table 20 IMDb Results

Query

Number

Keywords SQL SPARQL

Build Time Total time MAP Build Time Total time MAP

1 "denzel washington" 2.083 2.252 1,0 2.173 4.895 1,0

2 "clint eastwood" 2.145 2.171 1,0 3.004 15.698 1,0

3 "john wayne" 4.152 4.225 1,0 4.717 44.616 1,0

4 "will smith" 2.572 2.713 1,0 3 42.369 1,0

5 "harrison ford" 2.037 2.104 1,0 2.248 42.529 1,0

6 "julia roberts" 2.34 2.431 1,0 2.363 44.548 1,0

7 "tom hanks" 2.005 2.063 1,0 3.076 14.891 1,0

8 "johnny depp" 2.43 2.526 1,0 2.994 14.001 1,0

9 "angelina jolie" 2.447 2.5 1,0 2.405 12.188 1,0

10 "morgan freeman" 2.04 2.096 1,0 2.018 13.078 1,0

11 "gone with the wind" 2 2.143 1,0 2.037 43.739 1,0

12 "star wars" 7.269 7.466 1,0 7.217 46.666 1,0

13 "casablanca" 1.376 1.414 1,0 1.514 12.998 1,0

14 "lord of the rings" 2.985 3.102 1,0 3.005 14.881 1,0

15 "the sound of music" 1.874 1.944 1,0 1.969 45.506 1,0

16 "wizard of oz" 2.818 3.146 1,0 3.119 15.166 1,0

17 "the notebook" 0.513 0.569 1,0 0.572 10.103 1,0

18 "forrest gump" 0.802 0.855 1,0 1.019 13.247 1,0

19 "the princess bride" 0.481 0.585 1,0 0.507 41.915 1,0

20 "the godfather" 2.78 2.926 1,0 3.031 14.239 1,0

21 title "atticus finch" 0.323 12.629 1,0 0.324 16.968 1,0

22 title "indiana jones" 1.519 1.862 1,0 2.008 13.141 1,0

23 title "james bond" 2.469 2.717 1,0 2.655 46.868 1,0

24 title "rick blaine" 0.545 13.057 1,0 0.522 17.864 1,0

25 title "will kane" 0.11 2.481 1,0 0.129 19.06 1,0

26 title "dr. hannibal lecter" 0.536 14.151 1,0 0.52 17.716 1,0

27 title "norman bates" 0.714 13.105 1,0 0.75 18.867 1,0

28 title "darth vader" 0.637 0.718 1,0 0.689 11.18 1,0

29 title "the wicked witch of
the west"

0.601 13.14 1,0 0.641 17.57 1,0

30 title "nurse ratched" 0.248 12.869 1,0 0.246 17.233 1,0

31 title "frankly my dear i

don't give a damn"

0.159 0.742 1,0 0.154 7.895 1,0

32 title "i'm going to make

him an offer he can't

refuse"

0.284 0.443 1,0 0.03 29.944 1,0

33 title "you don't

understand i coulda had

class i coulda been a

contender i coulda been
somebody instead of a

bum which is what i am"

0.108 0.748 1,0 0.108 8.334 1,0

34 title "toto, i've a feeling
we're not in kansas any

more"

0.897 0.986 1,0 0.921 9.098 1,0

35 title "here's looking at

you kid"

0.4 1.989 1,0 0.32 28.921 1,0

36 hamill skywalker 4.231 4.484 1,0 4.147 18.766 1,0

37 "tom hanks" year =

"2004"

1.755 13.094 1,0 2.092 19.562 1,0

38 "henry fonda" "yours
mine ours character"

1.137 12.452 1,0 1.237 23.098 1,0

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 90

39 "russell crowe" gladiator

character

0.598 0.751 1,0 0.605 25.764 1,0

40 "brent spiner" "star trek" 7.818 8.506 1,0 7.868 30.819 1,0

41 "audrey hepburn" year =
"1951"

1.216 1.305 1,0 1.31 11.792 1,0

42 name "jacques clouseau" 0.193 0.216 1,0 0.204 11.566 1,0

43 name "jack ryan" 0.064 0.093 1,0 0.032 38.878 1,0

44 "rocky" "stallone" 13.765 15.279 0 14.016 30.179 0

45 name "terminator" 0.642 0.721 1,0 0.84 15.023 1,0

46 "harrison ford" "george

lucas"

3.097 3.333 0 3.51 20.146 0

47 "sean connery" "fleming" 6.73 7.084 0 6.49 25.58 0

48 "keanu reeves"
"wachowski"

1.778 2.059 0 1.753 13.084 0

49 "dean jones" "herbie" 2.672 3.025 0 3.01 20.091 0

50 "indiana jones" "last

crusade" "lost ark"

3.989 4.746 0 4.029 21.359 0

Figure 28 shows the query build time and the total elapsed time (in seconds,

on the Y-axis) of each query in Coffman’s benchmark (numbered 1 to 50, on the

X-axis) for the SPARQL and SQL versions. Note that, again, the SPARQL total

elapsed time was always much larger than the SQL total elapsed time, except for a

few queries (crosses on top of squares), and that the SPARQL and the SQL query

build times were nearly the same.

Figure 28 IMDb - Build Time and Total Elapsed Time

6.2.3. Experiments with MusicBrainz

We tested the tool against relational versions of the MusicBrainz dataset and a list

of 25 KwQ+ queries adapted from the question of QALD-26.

Table 21 shows the questions, the KwQ+ queries for each question, and the

test results. As for IMDb tests, to improve processing time, we surrounded some

keywords with quotes.

6 https://github.com/ag-sc/QALD

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 91

 To summarize, the precision was nearly 88%, 23 of the 25 valid queries

achieve 100% of precision. A brief analysis of the correctness of the results follows:

Query 14 and Query 19 failed because the database does not contain

information about the track composer or album.

Query 7 achieved only 80% of precision and Query 21 failed because the

database does not have information about the period of time a person belonged to a

band.

Table 21 Music Brainz Results

Query

Number

QALD Question Keywords Build Time Total time MAP

1 Which singles did Slayer

release?
slayer group track 0,371 2,624 1,00

2 Which groups was David
Bowie a member of?

David Bowie person
"music group"

1,978 2,360 1,00

3 When was the band

Dover founded?
artist Dover begin year 0,478 0,793 1,000

4 How many albums did
Michael Jackson record?

"Michael Jackson" artist
album

0,373 1,943 1,000

5 Who composed the Star

Wars soundtrack?
“Star Wars” track person 0,241 1,918 0,14

6
Which artists have their

50th birthday on May 30,
1962?

person "begin date
day"=30 "begin date

month"=5 "begin date

year"=1962

0,044 0,786 1,00

7 Give me the present

members of The Cure
person group "The Cure" 0,172 0,502 0,80

8 Give me all Kraftwerk

albums!
Kraftwerk group album 0,353 1,482 1,00

9 How many bands are

called Nirvana?
group Nirvana 0,253 0,467 1,00

10 When did the Sex Pistols

break up?
"Sex Pistols" end year 0,432 0,687 1,00

11 Was Quee MacArthur a

member of Queen?

"Quee MacArthur" music

group
0,105 0,404 1,00

12

When is the birthday of
Tom Waits?

"Tom Waits" person

"begin date day" "begin
date month" "begin date

year"

0,091 0,337 1,00

13
Which artists were born

on the 29th of December
1960?

person "begin date
day"=29 "begin date

month"=12 "begin date

year"=1960

0,043 0,851 1,00

14 How many bands broke

up in 2010?
roup end year 2010 0,059 0,637 1,00

15 Give me all albums with

the BBC Symphony
Orchestra.

"BBC Symphony

Orchestra" group album
0,446 1,401 1,00

16 Give me all bands that

Michael Stipe is a

member of.

"Michael Stipe" person

group
0,066 0.431 1,00

17 How many albums did

Amy Macdonald release?

"Amy Macdonald" artist

album
0,224 1,397 1,00

18 Give me all live albums
by Michael Jackson

“Michael Jackson” artist
album live

0,727 1,966 1,00

19 Who produced the album

In Utero?
"In Utero" album artist 0,247 1,5 0,08

20 How long is the song
Hardcore Kids?

Hardcore Kids duration 0,403 1,388 1,00

21 When did Kurt Cobain

join Nirvana?

"Kurt Cobain" person

Nirvana group
0,383 0,583 0,00

22 Give me all songs by
Aretha Franklin

"Aretha Franklin" artist
track

0,331 2,164 1,00

23 Since when does

Millencolin exist?

Millencolin group start

year
0,316 0,490 1,00

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 92

24 How many members does

the band Trio have?
group Trio person 0,245 0,389 1,00

25 Are there members of the

Ramones that are not
called Ramone?

group Ramones person

name!="Ramone"

0,188 20,716 1,00

6.3 Chapter Conclusion

This section summarizes the lessons learned from the experiments. Table 22 shows

the total elapsed time, from the submission of the keyword-based query until the

display of the results, and the query build time, i.e., the time to process matches and

construct the SQL or SPARQL queries.

Quality of the query results. The correctness of the translation process for

the 50 keyword-based queries of Coffman’s benchmark was satisfactory, for both

Mondial and IMDb, in both environments. For each keyword search executed, the

results obtained were exactly the same in both the RDF and relational environments,

as expected, since the construction process of the abstract query was the same in

both cases. In this aspect, the difference is in the concrete query structure (SPARQL

versus SQL) and not in the query target. The correctness of the translation process

for the 25 questions, adapted to KwQ+ queries, from QALD-2 for MusicBrainz

dataset was also satisfactory.

Total elapsed time. The total elapsed time was reasonable, on average, in all

experiments. Even for a large database, such as IMDb, the total elapsed time was,

on average, nearly 4 seconds, in the relational environment, but raised to 22

seconds, in the RDF environment. Indeed, the total elapsed time of the SQL queries

was 4-6 times faster than the SPARQL queries, on average. Queries with contain

filter use a text index, which is over all object values of the triples, for RDF datasets.

However, for relational databases, there is a separate, smaller index for each text

attribute. Thus, the total elapsed time of SQL queries with a contain filter was

smaller than that of SPARQL queries.

Queries with a contain filter use a text index, which is over all object values

of the triples, in RDF datasets. But, in relational databases, there is a separate,

smaller index for each text attribute. Thus, the total elapsed time of SQL queries

with a contain filter was smaller than that of SPARQL queries (as Queries 12-14 in

Section 6.2.2).

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 93

Query build time. In all experiments, the query build time was nearly the

same in both environments, since processing matches, calculating scores and

constructing the abstract query were the same.

In the relational environment, for the experiments with Mondial, the query

build time accounted for 40-50% of the total elapsed time, on average; for the

experiments with IMDb, it raised to slightly over 70-75%, possibly due to the

ambiguity of IMDb data; for the experiment with MusicBrainz, it was 30%.

By contrast, in the RDF environment, the query build time accounted for only

6-15% of the total elapsed time, on average. This behavior can be explained because

matching is a costly process in both environments, but SPARQL queries took much

longer to execute than SQL queries.

Table 22 Summary of the experiments

Database

Mondial IMDb MusicBrainz

Total Elapsed Time (in seconds)

Average
Relational 0.147 6.050 1.93

RDF 0.802 22.679 -

Maximum
Relational 0.516 21.560 20.72

RDF 1.982 47.680 -

Minimum
Relational 0.051 0.080 0.34

RDF 0.311 7.950 -

Query Build Time (in seconds)

Average
Relational 0.066 3.723 0.34

RDF 0.047 3.219 -

Maximum
Relational 0.154 18.690 1.98

RDF 0.121 17.680 -

Minimum
Relational 0.021 0.030 0.04

RDF 0.012 0.030 -

Query Build Time / Total Elapsed Time (in percentage)

Average
Relational 50.5% 77.6% 30.7&

RDF 6.6% 15.5% -

Maximum
Relational 73.6% 99.7% 83.8

RDF 13.5% 60.3% -

Minimum
Relational 19.6% 0.7% 0.9%

RDF 3.3% 0.1% -

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

7
Conclusions and Future Work

7.1 Conclusions

In the last years, database applications that offer keyword-based query interfaces

became a relevant research topic with the goal of hiding from users the non-friendly

queries. The main contribution of this thesis, presented in Chapter 4, is a translation

algorithm for graph databases that, given an advanced keyword query, produces

answers. Since to find the optimal solutions is an NP-Complete problem, we

proposed heuristics and incorporated them in the translation algorithm. The

translation algorithm adopts standard definitions of schema and query, and

functions to find the match and calculate the score, which allows to easily extend

the algorithm for different environment.

Chapter 5 detailed the architecture, implementation and interface of a tool

and a framework that uses the translation algorithm. This framework is the second

contribution of this thesis and supports ORACLE 12c and JENA TDB, for the RDF

environment, and ORACLE 12c and POSTGRES, for the relational environment.

The third contribution, presented in Chapter 6, is the evaluation of the

translation algorithm. We tested the proposed algorithm with popular keyword

search benchmarks for Mondial, IMDb and MusicBrainz. The correctness of the

translation process was satisfactory. The total elapsed time was reasonable, on

average, in all experiments. Even for a large database, such as IMDb, the total

elapsed time was, on average, nearly 4 seconds. Hence, to summarize the results,

the translation algorithm achieved 69%, 90% and 88% of MAP for Mondial, IMDb

and MusicBrainz, respectively.

In the experiments, we also compared the RDF and relational environments,

in Oracle. The results obtained were the same, as expected, since the construction

process of the abstract query was the same in both cases. The total elapsed time was

reasonable, on average, in all experiments. The total elapsed time of the SQL

queries was 4-6 times faster than the SPARQL queries, on average. The query build

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 95

time was nearly the same in both environments, since processing matches,

calculating scores and constructing the abstract query were the same.

Partial results related to this thesis, as well as other important works, were

reported in the following articles:

 García, G.M., Izquierdo, Y.T., Menendez, E.S., Dartayre, F.,

Casanova, M.A RDF Keyword-based Query Technology Meets a

Real-World Dataset. 20th EDBT 2017, pp. 656-667.

 Izquierdo, Y.T., Casanova, M.A., García, G.M., Dartayre, F., Levy,

C.H. Keyword Search over Federated RDF Datasets. Proc. ER

Forum 2017, CEUR Workshop Proceedings, Vol. 1979, CEUR-

WS.org

 Izquierdo Y.T., García G.M., Menendez E.S., Casanova M.A.,

Dartayre F., Levy C.H. QUIOW: A Keyword-Based Query

Processing Tool for RDF Datasets and Relational Databases. 29th

DEXA 2018. pp. 259-269

 Izquierdo, Y.T., García, G.M., Casanova, M.A., Menendez, E.S.,

Paes Leme, L.A.P., Neves Jr., A., Lemos, M., Finamore, A.C.,

Oliveira, C.M. S., Keyword Search over Schema-less RDF Datasets

by SPARQL Query Compilation. (submitted for publication)

 Izquierdo, Y.T., García, G.M., Casanova, M.A., Paes Leme, L.A.P.,

Sardianos, C., Tserpes, K., Varlamis, I., Ruback, L. Stop and Move

Sequence Expressions over Semantic Trajectories in RDF.

(submitted for publication)

 Neves, A.B, Paes Leme, L.A.P., Izquierdo, Y.T., Garcia, G.M,

Casanova, M.A, Menendez, E.S. Computing Benchmarks for RDF

Keyword Search. (submitted for publication)

7.2 Future Work

We may suggest a range of possibilities to improve our solution.

The first possibility is to use the measure proposed in (Menendez et al.,

2019) to automatically compute the ranking of the elements of the schema. We

could also use this measure to rank the results of a query.

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 96

The second possible path to follow is to change the step Connect Entity, and

to use the paths that better capture the connectivity between a given entity pair,

instead of the shortest path. To find these paths, we could use the ideas proposed in

(Herrera et al., 2016).

Other more obvious possibilities to improve our keyword search system is

to create a mechanism to automatically transform Natural Language sentences or

questions into advanced keyword queries and use our algorithm to find the answers,

equivalently to what we did in the experiments for Musicbrainz.

We also can use Machine Learning algorithms that take advantage of user’s

feedback to better tune the ranking of the elements and the score to produce better

answers.

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

8
Bibliography

ADITYA, B. BANKS : Browsing and Keyword Searching in Relational Databases

*. VLDB ’02: Proceedings of the 28th International Conference on Very Large

Databases, [s.l.], p. 1083–1086, 2002. DOI: 10.1016/B978-155860869-6/50114-1.

AGRAWAL, S.; CHAUDHURI, S.; DAS, G. DBXplorer: A system for keyword-

based search over relational databases. Proceedings - International Conference

on Data Engineering, [s.l.], p. 5–16, 2002. ISSN: 10844627, DOI:

10.1109/ICDE.2002.994693.

BERGAMASCHI, S. et al. Combining user and database perspective for solving

keyword queries over relational databases. Information Systems, [s.l.], vol. 55, p.

1–19, 2016. ISSN: 03064379, DOI: 10.1016/j.is.2015.07.005.

CHOPRA, S.; RAO, M. R. The Steiner tree problem I: Formulations, compositions

and extension of facets. Mathematical Programming, [s.l.], vol. 64, no. 1–3, p.

209–229, 1994. ISSN: 0025-5610, DOI: 10.1007/BF01582573.

COFFMAN, J.; WEAVER, A. C. A framework for evaluating database keyword

search strategies. In: dl.acm.org. [s.l.]: [s.n.], 2010. retrieved

<https://dl.acm.org/citation.cfm?id=1871531>. accessed Jun./11/19. DOI:

10.1145/1871437.1871531.

CORMEN, T. et al. Introduction to algorithms. [s.l.], 2009.

ELBASSUONI, S.; BLANCO, R. Keyword search over RDF graphs. In:

Proceedings of the 20th ACM international conference on Information and

knowledge management - CIKM ’11. New York, New York, USA: ACM Press,

2011. retrieved <http://dl.acm.org/citation.cfm?doid=2063576.2063615>. accessed

Jun./12/19. ISBN: 9781450307178, DOI: 10.1145/2063576.2063615.

GKIRTZOU, K.; PAPASTEFANATOS, G.; DALAMAGAS, T. RDF Keyword

Search based on Keywords-To-SPARQL Translation. In: Proceedings of the First

International Workshop on Novel Web Search Interfaces and Systems -

NWSearch ’15. New York, New York, USA: ACM Press, 2015. retrieved

<http://dl.acm.org/citation.cfm?doid=2810355.2810357>. accessed Jun./12/19.

ISBN: 9781450337892, DOI: 10.1145/2810355.2810357.

HAN, S. et al. Keyword Search on RDF Graphs - A Query Graph Assembly

Approach. In: Proceedings of the 2017 ACM on Conference on Information and

Knowledge Management - CIKM ’17. New York, New York, USA: ACM Press,

2017. retrieved <http://dl.acm.org/citation.cfm?doid=3132847.3132957>. accessed

Jun./12/19. ISBN: 9781450349185, DOI: 10.1145/3132847.3132957.

HE, H.; YANG, J.; YU, P. S. BLINKS: Ranked Keyword Searches on Graphs.

Proceedings of the 2007 ACM SIGMOD International Conference on

Management of Data. [s.l.]: [s.n.], 2007. 305--316 p. ISBN: 9781595936868, DOI:

10.1145/1247480.1247516.

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 98

HERRERA, J. E. T. et al. DBpedia Profiler Tool : Profiling the Connectivity of

Entity Pairs in DBpedia. In: Proc. of the 5th Int’l. Workshop on Intelligent

Exploration of Semantic Data (IESD16) collocated with the 15th Int’l.

Semantic Web Conf. (ISWC’16). [s.l.]: [s.n.], 2016. retrieved

<http://www.inf.puc-rio.br/~casanova/Publications/Papers/2016-Papers/2016-

IESD-Herrera.pdf>. accessed Feb./12/20.

HIEMSTRA, D. Information Retrieval Models. [s.l.]: [s.n.], 2009. retrieved

<https://pdfs.semanticscholar.org/7e43/8364660c2869d21947c4a44c3b448e83d8d

0.pdf>. accessed Jul./05/19.

HRISTIDIS, V.; PAPAKONSTANTINOU, Y. Discover: Keyword Search in

Relational Databases. VLDB ’02: Proceedings of the 28th International

Conference on Very Large Databases, [s.l.], p. 670–681, 2002. ISBN:

9781558608696, DOI: 10.1016/B978-155860869-6/50065-2.

KUMAR, R.; TOMKINS, A. A characterization of online browsing behavior. In:

pdfs.semanticscholar.org. [s.l.]: [s.n.], 2010. retrieved

<https://pdfs.semanticscholar.org/1170/7110ae2ed0924f1c633459c24d4e18f0e94

7.pdf#page=5>. accessed Jul./03/19. DOI: 10.1145/1772690.1772748.

LE, W. et al. Scalable keyword search on large RDF data. IEEE Transactions on

Knowledge and Data Engineering, [s.l.], vol. 26, no. 11, p. 2774–2788, 2014.

ISSN: 10414347, DOI: 10.1109/TKDE.2014.2302294.

LIN, X.-Q.; MA, Z.-M.; YAN, L. I. RDF Keyword Search Using a Type-based

Summary. Journal of Information Science & Engineering, [s.l.], vol. 34, no. 2,

p. 489–504, 2018. ISSN: 10162364.

MENENDEZ, E. S. et al. Novel Node Importance Measures to Improve Keyword

Search over RDF Graphs. In: Lecture Notes in Computer Science (including

subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics). [s.l.]: Springer, 2019. ISBN: 9783030276171, ISSN: 16113349,

DOI: 10.1007/978-3-030-27618-8_11.

OLIVEIRA, P. DE; SILVA, A. DA; MOURA, E. DE. Ranking Candidate

Networks of relations to improve keyword search over relational databases. In:

Proceedings - International Conference on Data Engineering. [s.l.]: [s.n.], 2015.

retrieved <https://ieeexplore.ieee.org/abstract/document/7113301/>. accessed

Jun./10/19. ISBN: 9781479979639, ISSN: 10844627, DOI:

10.1109/ICDE.2015.7113301.

PARR, T. The Definitive ANTLR 4 Reference. Climate Change 2013 - The

Physical Science Basis. [s.l.]: [s.n.], 2013. 322 p. ISBN: 9788578110796, ISSN:

1098-6596, DOI: 10.1088/1751-8113/44/8/085201.

QIN, L.; YU, J. X.; CHANG, L. Keyword search in databases. In: Proceedings of

the 35th SIGMOD international conference on Management of data -

SIGMOD ’09. New York, New York, USA: ACM Press, 2009. retrieved

<http://portal.acm.org/citation.cfm?doid=1559845.1559917>. accessed Jun./11/19.

ISBN: 9781605585512, DOI: 10.1145/1559845.1559917.

RIHANY, M.; KEDAD, Z.; LOPES, S. Keyword Search Over RDF Graphs Using

WordNet. BT - Proceedings of the 1st International Conference on Big Data and

Cyber-Security Intelligence, BDCSIntell 2018, Hadath, Lebanon, December 13-15,

2018. [s.l.]: [s.n.], 2018. retrieved <http://ceur-ws.org/Vol-2343/paper15.pdf>.

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 99

SMITH, F. The Matrix-Tree Theorem and Its Applications to Complete and

Complete Bipartite Graphs. [s.l.]: [s.n.], 2015. retrieved

<http://www.austinmohr.com/15spring4980/paper final draft.pdf>. accessed

Aug./01/19.

STOKOE, C.; OAKES, M. P.; TAIT, J. Word Sense Disambiguation in Information

Retrieval Revisited. [s.l.]: [s.n.], 2003.

TRAN, T. et al. Top-k Exploration of Query Graph Candidates for Efficient

Keyword Search on RDF ∗ Technical Report. Data Engineering, 2009. ICDE ’09.

IEEE 25th International Conference, [s.l.], 2009.

VIRGILIO, R. DE. RDF keyword search query processing via tensor calculus. In:

Lecture Notes in Computer Science (including subseries Lecture Notes in

Artificial Intelligence and Lecture Notes in Bioinformatics). [s.l.]: [s.n.], 2012.

retrieved <http://link.springer.com/10.1007/978-3-642-33615-7_22>. accessed

Jun./11/19. ISBN: 9783642336140, ISSN: 03029743, DOI: 10.1007/978-3-642-

33615-7_22.

VIRGILIO, R. DE; MACCIONI, A.; CAPPELLARI, P. A Linear and Monotonic

Strategy to Keyword Search over RDF Data. [s.l.]: [s.n.], 2013. p. 338–353. DOI:

10.1007/978-3-642-39200-9_28.

WANG, Y.; WANG, N.; ZHOU, L. Keyword Query Expansion Paradigm Based

on Recommendation and Interpretation in Relational Databases. Scientific

Programming, [s.l.], vol. 2017, p. 1–12, 2017. ISSN: 1058-9244, DOI:

10.1155/2017/7613026.

YANG, M. et al. Finding Patterns in a Knowledge Base using Keywords to

Compose Table Answers. PVLDB, [s.l.], vol. 7, no. 14, p. 1809–1820, 2014.

ZENZ, G. et al. From keywords to semantic queries-Incremental query construction

on the semantic web. Journal of Web Semantics, [s.l.], vol. 7, no. 3, p. 166–176,

2009. ISSN: 15708268, DOI: 10.1016/j.websem.2009.07.005.

ZHANG, L.; TRAN, T.; RETTINGER, A. Probabilistic query rewriting for

efficient and effective keyword search on graph data. Proceedings of the VLDB

Endowment, [s.l.], vol. 6, no. 14, p. 1642–1653, 2014. ISSN: 21508097, DOI:

10.14778/2556549.2556550.

ZHENG, W. et al. Semantic SPARQL similarity search over RDF knowledge

graphs. Proceedings of the VLDB Endowment, [s.l.], vol. 9, no. 11, p. 840–851,

2016. ISSN: 21508097, DOI: 10.14778/2983200.2983201.

ZHOU, Q. et al. SPARK: Adapting keyword query to semantic search. In: Lecture

Notes in Computer Science (including subseries Lecture Notes in Artificial

Intelligence and Lecture Notes in Bioinformatics). [s.l.]: [s.n.], 2007. retrieved

<https://link.springer.com/chapter/10.1007/978-3-540-76298-0_50>. accessed

Jun./10/19. ISBN: 3540762973, ISSN: 03029743, DOI: 10.1007/978-3-540-76298-

0_50.

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

9
Annex

9.1 Tokenize query grammar

grammar DankeGrammar_en_US_;

//the initial rule holds one or more sequences of keyword token

(keyword + filter)

start: sequence+ EOF;

//a sequence is a keyword with or without a filter

sequence: keyword filter?;

//A filter could be a simple filter or a logical filter or a range

filter

filter: rangeFilter | simpleFilter | logicalFilter;

rangeFilter: RANGE? DATE AND? DATE | RANGE? value AND? value;

logicalFilter: andFilter | orFilter | notFilter;

andFilter: simpleFilter AND? simpleFilter;

orFilter: simpleFilter OR simpleFilter;

simpleFilter: lessFilter | greaterFilter| equalFilter |

notEqualFilter | containsFilter;

equalFilter: EQUAL? (DATE|value) | EQUAL (STRING|ID);

lessFilter: LESS (DATE | value);

greaterFilter: GREATER (DATE|value);

containsFilter: CONTAINS (STRING|ID);

notEqualFilter: DISTINCT (DATE|value) | DISTINCT (STRING|ID);

notFilter: NOT IN? (STRING|ID);

value: FLOAT;

//a keyword is a literal with or without quotes

keyword: (ID | STRING) ;

EQUAL: '=' | [Ee][Qq][Uu][Aa][Ll] ([]? [Tt][Oo])?;

CONTAINS: [Cc][Oo][Nn][Tt][Aa][Ii][Nn][Ss];

GREATER: '>' | [Gg][Rr][Ee][Aa][Tt][Ee][Rr] ([]?

[Tt][Hh][Aa][Nn])?;

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 101

FLOAT: '-'? DIGIT+ (POINT DIGIT+)?;

DATE: (DIGIT DIGIT? WS* SEPARATOR? WS*)? MONTH WS* SEPARATOR?

WS* DIGIT DIGIT (DIGIT DIGIT)? ;

MONTH: JAN

 | FEV

 | MAR

 | APR

 | MAY

 | JUN

 | JUL

 | AUG

 | SEP

 | OCT

 | NOV

 | DEC

 ;

JAN : [Jj][Aa][Nn][Uu][Aa][Rr][Yy] | [Jj][Aa][Nn] | '01' |

'1';

FEV : [Ff][Ee][Bb][Rr][Uu][Aa][Rr][Yy] | [Ff][Ee][Bb] | '02' |

'2';

MAR : [Mm][Aa][Rr][Cc][Hh] | [Mm][Ar][Rr] | '03' |

'3';

APR : [Aa][Pp][Rr][Ii][Ll] | [Aa][Pp][Rr] | '04' |

'4';

MAY : [Mm][Aa][Yy] | [Mm][Aa][Yy] | '05' |

'5';

JUN : [Jj][Uu][Nn][Ee] | [Jj][Uu][Nn] | '06' |

'6';

JUL : [Jj][Uu][Ll][Yy] | [Jj][Uu][Ll] | '07' |

'7';

AUG : [Aa][Uu][Gg][Uu][Ss][Tt] | [Aa][Uu][Gg] | '08' |

'8';

SEP : [Ss][Ee][Pp][Tt][Ee][Mm][Bb][Ee][Rr] | [Ss][Ee][Pp] | '09' |

'9';

OCT : [Oo][Cc][Tt][Oo][Bb][Ee][Rr] | [Oo][Cc][Tt] | '10';

NOV : [Nn][Oo][Vv][Ee][Mm][Bb][Ee][Rr] | [Nn][Oo][Vv] | '11';

DEC : [Dd][Ee][Cc][Ee][Mm][Bb][Er][Rr] | [Dd][Ee][Zz] | '12';

SEPARATOR: '/' | '-';

AND: [Aa][Nn][Dd];

OR: [Oo][Rr];

NOT: [Nn][Oo][Tt];

IN: [Ii][Nn];

DISTINCT: '!=' | [Dd][Ii][Ss][Tt][Ii][Nn][Cc][Tt] ([]?

[Oo][Ff])?;

LESS: '<' | [Ll][Ee][Ee][Ss] ([]? [Tt][Hh][Aa][Nn])?;

RANGE: [Bb][Ee][Tt][We][Ee][Ee][Nn];

POINT: '.' | ',';

SYMBOL: '-' | '_'|'\''|'\"'|'/' | '.';

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

 102

ID: (LETTER|DIGIT+ SYMBOL) (LETTER|SYMBOL|DIGIT)*;

STRING: '"' (ESC_SEQ | ~('\\'|'"'))* '"';

fragment

DIGIT: [0-9];

WS: (' '

 | '\t'

 | '\r'

 | '\n')+ -> skip;

fragment

LETTER: 'A'..'Z'

 | 'a'..'z'

 | [áÁ] | [éÉ] | [íÍ] | [óÓ] |[úÚ] |[Ã³]

 | '\u00C0'..'\u00D6'

 | '\u00D8'..'\u00F6'

 | '\u00F8'..'\u02FF'

 | '\u0370'..'\u037D'

 | '\u037F'..'\u1FFF'

 | '\u200C'..'\u200D'

 | '\u2070'..'\u218F'

 | '\u2C00'..'\u2FEF'

 | '\u3001'..'\uD7FF'

 | '\uF900'..'\uFDCF'

 | '\uFDF0'..'\uFFFD';

fragment

HEX_DIGIT: ('0'..'9'|'a'..'f'|'A'..'F');

fragment

ESC_SEQ: '\\' ('b'|'t'|'n'|'f'|'r'|'\"'|'\''|'\\')

 | UNICODE_ESC

 | OCTAL_ESC;

fragment

OCTAL_ESC: '\\' ('0'..'3') ('0'..'7') ('0'..'7')

 | '\\' ('0'..'7') ('0'..'7')

 | '\\' ('0'..'7');

fragment

UNICODE_ESC: '\\' 'u' HEX_DIGIT HEX_DIGIT HEX_DIGIT HEX_DIGIT;

DBD
PUC-Rio - Certificação Digital Nº 1613325/CA

